Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905269

RESUMO

Eye-tracking techniques have gained widespread application in various fields including research on the visual system, neurosciences, psychology, and human-computer interaction, with emerging clinical implications. In this preliminary phase of our study, we introduce a pilot test of innovative virtual reality technology designed for tracking head and eye movements among healthy individuals. This tool was developed to assess the presence of mild traumatic brain injury (mTBI), given the frequent association of oculomotor function deficits with such injuries. Alongside eye-tracking, we also integrated fMRI due to the complementary nature of these techniques, offering insights into both neural activation patterns and behavioural responses, thereby providing a comprehensive understanding of oculomotor function. We used fMRI with tasks evaluating oculomotor functions: Smooth Pursuit (SP), Saccades, Anti-Saccades, and Optokinetic Nystagmus (OKN). Prior to the scanning, the testing with a system of VR goggles with integrated eye and head tracking was used where subjects performed the same tasks as those used in fMRI. 31 healthy adult controls (HCs) were tested with the purpose of identifying brain regions associated with these tasks and collecting preliminary norms for later comparison with concussed subjects. HCs' fMRI results showed following peak activation regions: SP-cuneus, superior parietal lobule, paracentral lobule, inferior parietal lobule (IPL), cerebellartonsil (CT); Saccades-middle frontal gyrus (MFG), postcentral gyrus, medial frontal gyrus; Anti-saccades-precuneus, IPL, MFG; OKN-middle temporal gyrus, ACC, postcentral gyrus, MFG, CT. These results demonstrated brain regions associated with the performance on oculomotor tasks in healthy controls and most of the highlighted areas are corresponding with those affected in concussion. This suggests that the involvement of brain areas susceptible to mTBI in implementing oculomotor evaluation, taken together with commonly reported oculomotor difficulties post-concussion, may lead to finding objective biomarkers using eye-tracking tasks.


Assuntos
Tecnologia de Rastreamento Ocular , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Adulto , Masculino , Feminino , Movimentos Oculares/fisiologia , Movimentos Sacádicos/fisiologia , Adulto Jovem , Acompanhamento Ocular Uniforme/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Pessoa de Meia-Idade , Nistagmo Optocinético/fisiologia
2.
Hum Brain Mapp ; 42(16): 5477-5494, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427960

RESUMO

Mild traumatic brain injury (mTBI), frequently referred to as concussion, is one of the most common neurological disorders. The underlying neural mechanisms of functional disturbances in the brains of concussed individuals remain elusive. Novel forms of brain imaging have been developed to assess patients postconcussion, including functional magnetic resonance imaging (fMRI), susceptibility-weighted imaging (SWI), diffusion MRI (dMRI), and perfusion MRI [arterial spin labeling (ASL)], but results have been mixed with a more common utilization in the research environment and a slower integration into the clinical setting. In this review, the benefits and drawbacks of the methods are described: fMRI is an effective method in the diagnosis of concussion but it is expensive and time-consuming making it difficult for regular use in everyday practice; SWI allows detection of microhemorrhages in acute and chronic phases of concussion; dMRI is primarily used for the detection of white matter abnormalities, especially axonal injury, specific for mTBI; and ASL is an alternative to the BOLD method with its ability to track cerebral blood flow alterations. Thus, the absence of a universal diagnostic neuroimaging method suggests a need for the adoption of a multimodal approach to the neuroimaging of mTBI. Taken together, these methods, with their underlying functional and structural features, can contribute from different angles to a deeper understanding of mTBI mechanisms such that a comprehensive diagnosis of mTBI becomes feasible for the clinician.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Humanos
3.
Brain Behav ; 11(8): e2261, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152089

RESUMO

OBJECTIVES: This study aimed to investigate changes in three intrinsic functional connectivity networks (IFCNs; default mode network [DMN], salience network [SN], and task-positive network [TPN]) in individuals who had sustained a mild traumatic brain injury (mTBI). METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 27 mTBI patients with persistent postconcussive symptoms, along with 26 age- and sex-matched controls. These individuals were recruited from a Level-1 trauma center, at least 3 months after a traumatic episode. IFCNs were established based on seed-to-voxel, region-of-interest (ROI) to ROI, and independent component analyses (ICA). Subsequently, we analyzed the relationship between functional connectivity and postconcussive symptoms. RESULTS: Seed-to-voxel analysis of rs-fMRI demonstrated decreased functional connectivity in the right lateral parietal lobe, part of the DMN, and increased functional connectivity in the supramarginal gyrus, part of the SN. Our TPN showed both hypo- and hyperconnectivity dependent on seed location. Within network hypoconnectivity was observed in the visual network also using group comparison. Using an ICA, we identified altered network functional connectivity in regions within four IFCNs (sensorimotor, visual, DMN, and dorsal attentional). A significant negative correlation between dorsal attentional network connectivity and behavioral symptoms score was also found. CONCLUSIONS: Our findings indicate that rs-fMRI may be of use clinically in order to assess disrupted functional connectivity among IFCNs in mTBI patients. Improved mTBI diagnostic and prognostic information could be especially relevant for athletes looking to safely return to play, as well for individuals from the general population with persistent postconcussive symptoms months after injury, who hope to resume activity.


Assuntos
Concussão Encefálica , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa , Lobo Parietal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...