Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 569(7757): 546-550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118523

RESUMO

The recovery of the stratospheric ozone layer relies on the continued decline in the atmospheric concentrations of ozone-depleting gases such as chlorofluorocarbons1. The atmospheric concentration of trichlorofluoromethane (CFC-11), the second-most abundant chlorofluorocarbon, has declined substantially since the mid-1990s2. A recently reported slowdown in the decline of the atmospheric concentration of CFC-11 after 2012, however, suggests that global emissions have increased3,4. A concurrent increase in CFC-11 emissions from eastern Asia contributes to the global emission increase, but the location and magnitude of this regional source are unknown3. Here, using high-frequency atmospheric observations from Gosan, South Korea, and Hateruma, Japan, together with global monitoring data and atmospheric chemical transport model simulations, we investigate regional CFC-11 emissions from eastern Asia. We show that emissions from eastern mainland China are 7.0 ± 3.0 (±1 standard deviation) gigagrams per year higher in 2014-2017 than in 2008-2012, and that the increase in emissions arises primarily around the northeastern provinces of Shandong and Hebei. This increase accounts for a substantial fraction (at least 40 to 60 per cent) of the global rise in CFC-11 emissions. We find no evidence for a significant increase in CFC-11 emissions from any other eastern Asian countries or other regions of the world where there are available data for the detection of regional emissions. The attribution of any remaining fraction of the global CFC-11 emission rise to other regions is limited by the sparsity of long-term measurements of sufficient frequency near potentially emissive regions. Several considerations suggest that the increase in CFC-11 emissions from eastern mainland China is likely to be the result of new production and use, which is inconsistent with the Montreal Protocol agreement to phase out global chlorofluorocarbon production by 2010.

2.
Geophys Res Lett ; 45(20): 11423-11430, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33005064

RESUMO

Carbon tetrachloride (CCl4) is an ozone-depleting substance, accounting for about 10% of the chlorine in the troposphere. Under the terms of the Montreal Protocol, its production for dispersive uses was banned from 2010. In this work we show that, despite the controls on production being introduced, CCl4 emissions from the eastern part of China did not decline between 2009 and 2016. This finding is in contrast to a recent bottom-up estimate, which predicted a significant decrease in emissions after the introduction of production controls. We find eastern Asian emissions of CCl4 to be 16 (9-24) Gg/year on average between 2009 and 2016, with the primary source regions being in eastern China. The spatial distribution of emissions that we derive suggests that the source distribution of CCl4 in China changed during the 8-year study period, indicating a new source or sources of emissions from China's Shandong province after 2012.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...