Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675214

RESUMO

Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer-active pharmaceutical ingredient (API)-mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD). The release from such ASDs is expected to be faster and higher compared to the raw materials and thus enhance bioavailability. Printing directly from powder while forming ASDs from loperamide in Polyvinylalcohol was realized. Different techniques such as a change in infill and the incorporation of sorbitol as a plastisizer to change release patterns as well as a non-destructive way for the determination of API distribution were shown. By measuring the melt viscosities of the mixtures printed, a rheological model for the printer used is proposed.

2.
Int J Pharm ; 633: 122613, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36657554

RESUMO

Preclinical development of deuterated pyrazoloquinolinone ligands, promising drug candidates for various neuropsychiatric disorders, was hindered by unusually low solubility in water and oils. DK-I-60-3 (7-methoxy-d3-2-(4-methoxy-d3-phenyl)-2,5-dihydro-3Hpyrazolo[4,3-c]quinolin-3-one) is one of such pyrazoloquinolinones, and we recently reported about increased oral bioavailability of its nanocrystal formulation (NC). Lipid nanoparticles (LNP) with a high concentration of lecithin, which enhances loading capacity of the lipid matrix, may give rise to further improvement. After preformulation studies by differential scanning calorimetry and polarized light microscopy, LNP were prepared by the hot high pressure homogenization, and characterized in terms of particle size, morphology, and encapsulation efficacy. The layered structure visible on atomic force micrographs was confirmed by nuclear magnetic resonance. Obtained formulations were desirably stable, with small particle size (<100 nm), and high encapsulation efficacy (>99 %). Lecithin was partially fluid and most probably located in the outer shell of the particle, together with DK-I-60-3. While the hydrophobic part of polysorbate 80 was completely immobilized, its hydrophilic part was free in the aqueous phase. In oral neuropharmacokinetic study in rats, an around 1.5-fold increase of area under the curve with LNP compared to NC was noticed both in brain and plasma. In bioavailability study, F value of LNP (34.7 ± 12.4 %) was 1.4-fold higher than of NC (24.5 ± 7.8 %); however, this difference did not reach statistical significance. Therefore, employment of LNP platform in preclinical formulation of DK-I-60-3 imparted an incremental improvement of its physicochemical as well as pharmacokinetic behavior.


Assuntos
Lecitinas , Nanopartículas , Ratos , Animais , Lecitinas/química , Ligantes , Nanopartículas/química , Lipossomos , Tamanho da Partícula , Disponibilidade Biológica , Administração Oral , Solubilidade , Portadores de Fármacos/farmacocinética
3.
Int J Pharm X ; 6: 100222, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162398

RESUMO

As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100-55 (EL 100-55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100-55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy. Additionally, we observed differences in the extent of phase-separation in dependence on the selected HPC grade. As HPC-UL exhibited decisive lower melt viscosity than HPC-SSL, formation of partially miscible phases between HPC-UL and EL 100-55 was facilitated. Consequently, as homogeneously mixed polymer phases were required for optimal extent of solubility improvement, the manufacturing-dependent differences in dissolution performances were smaller using HPC-UL, instead of HPC-SSL, i.e. using HPC-UL was less demanding on shear stress provided by the process.

4.
Eur J Pharm Sci ; 106: 34-40, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28546105

RESUMO

AIM: The purpose of this study was to evaluate skin permeation and penetration of nonivamide which has been formulated in novel film-forming formulations (FFFs). These formulations aim to prolong the availability of capsaicinoids which are used in long-term treatment of chronic pruritus. METHODS: An oily solution of nonivamide was loaded into porous silica particles which then were suspended in an aqueous dispersion of a sustained release polymer. Permeation and penetration experiments were performed ex vivo with postauricular porcine skin using modified Franz diffusion cells. The penetrated drug amount was assessed ex vivo by skin surface biopsy followed by cryo-sectioning. Furthermore, in vivo skin irritation experiments were performed to compare the potential skin irritation caused by the FFFs to conventionally used semi-solid formulations. RESULTS: Permeation rates of nonivamide from FFF through the skin are comparable to that from clinically used immediate release formulations. This elucidates the therapeutic safety profile of the novel FFF. Penetration studies confirmed the prolonged drug availability at the site of action. FFFs were found not to irritate the skin of healthy volunteers. CONCLUSION: FFFs with sustained nonivamide penetration represent safe and easy-to-use formulations. They therefore may improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance through a sustained release regime.


Assuntos
Capsaicina/análogos & derivados , Dióxido de Silício/química , Absorção Cutânea/fisiologia , Administração Cutânea , Animais , Capsaicina/administração & dosagem , Capsaicina/química , Capsaicina/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óleos/química , Permeabilidade , Polímeros/química , Porosidade , Suínos
5.
Eur J Pharm Biopharm ; 108: 1-8, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27553263

RESUMO

The purpose of this study was to develop film-forming formulations facilitating long-term treatment of chronic pruritus with capsaicinoids. To this end, an oily solution of nonivamide was loaded into porous silica particles which were then suspended in the dispersion of a sustained release polymer. Such formulations form a film when applied to the skin and encapsulate the drug loaded silica particles in a dry polymeric matrix. Dermal delivery and permeation of the antipruritic drug nonivamide (NVA) are controlled by the matrix. The film-forming formulations were examined regarding homogeneity, storage stability, substantivity and ex vivo skin permeation. Confocal Raman spectral imaging proved the stability of silica-based film-forming formulations over a period of 6 months. Substantivity was found to be enhanced substantially compared to a conventional semisolid formulation. Permeation rates of nonivamide from film-forming formulations through the skin are much lower compared to those achieved with a conventional immediate release formulation with the same drug amount. Due to the drug reservoir in the polymer matrix, a sustained permeation is enabled. Film-forming formulations may therefore improve the treatment of chronic pruritus with capsaicinoids by enhancing patient compliance through a sustained release regime.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Dióxido de Silício/química , Pele/efeitos dos fármacos , Animais , Antipruriginosos/química , Capsaicina/análogos & derivados , Capsaicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Microscopia Confocal , Modelos Animais , Óleos , Permeabilidade , Polímeros/química , Porosidade , Prurido/tratamento farmacológico , Absorção Cutânea , Análise Espectral Raman , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA