Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Anal Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847356

RESUMO

Epinephrine (EP) is an essential catecholamine in the human body. Currently, most EP detection methods are not suitable for in vivo detection due to material limitations. An organic small molecule fluorescent probe based on a chemical cascade reaction for the detection of EP was designed. Anionic heptamethine cyanine dye was selected as a fluorescent dye because of its NIR fluorescence emission with excellent biocompatibility. The secondary amine of EP nucleophilically attacks the carbonate of the probe with its stronger nucleophilicity and further undergoes intramolecular nucleophilic cyclization to release the fluorophore. Other substances containing only primary amines or no ß-OH lack reaction competitiveness due to their weaker nucleophilicity or inability to undergo further cyclization. The fluorescence recovery of the probe was linearly related to the EP concentration of 2-75 µmol/L. The detection limit was 0.4 µmol/L. The recovery rate was 94.78-111.32%. Finally, we successfully achieved bioimaging of EP in living cells and EP analogue in nematodes.

2.
Opt Express ; 32(9): 16351-16361, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859264

RESUMO

Active control of induced reflection is crucial for many potential applications ranging from slowing light to biosensing devices. However, most previous approaches require patterned nanostructures to achieve controllable induced reflection, which hinders their further applications due to complicated architectures. Herein, we propose a lithography-free multilayered structure to achieve the induced reflection through the coupling of dual-topological-interface-states. The multilayers consist of two one-dimensional (1D) photonic crystals (PCs) and an Ag film separated by a Spacer, topological edge state (TES) and topological Tamm state (TTS) can be excited simultaneously and their coupling induces the reflection window. The coupled-oscillator model is proposed to mimic the coupling between the TES and TTS, and the analytical results are in good agreement with finite element method (FEM). In addition, the TES-TTS induced reflection is robust to the variation of structural parameters. By integrating an ultra-thin phase-change film of Ge2Sb2Te5 (GST) into the multilayers, the induced reflection can be switched through the phase transition of the GST film. The multipole decomposition reveals that the vanished reflection window is arising from the disappearance of TTS associated with the toroidal dipole (TD) mode.

3.
Opt Express ; 32(8): 13978-13985, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859355

RESUMO

Optical chirality is highly demanded for biochemical sensing, spectral detection, and advanced imaging, however, conventional design schemes for chiral metamaterials require highly computational cost due to the trial-and-error strategy, and it is crucial to accelerate the design process particularly in comparably simple planar chiral metamaterials. Herein, we construct a bidirectional deep learning (BDL) network consists of spectra predicting network (SPN) and design predicting network (DPN) to accelerate the prediction of spectra and inverse design of chiroptical response of planar chiral metamaterials. It is shown that the proposed BDL network can accelerate the design process and exhibit high prediction accuracy. The average process of prediction only takes ∼15 ms, which is 1 in 40000 compared to finite-difference time-domain (FDTD). The mean-square error (MSE) loss of forward and inverse prediction reaches 0.0085 after 100 epochs. Over 95.2% of training samples have MSE ≤ 0.0042 and MSE ≤ 0.0044 for SPN and DPN, respectively; indicating that the BDL network is robust in the inverse deign without underfitting or overfitting for both SPN and DPN. Our founding shows great potentials in accelerating the on-demand design of planar chiral metamaterials.

4.
Pest Manag Sci ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860678

RESUMO

BACKGROUND: The complex interaction between plant viruses and their insect vectors is the basis for the epidemiology of plant viruses. The 'Vector Manipulation Hypothesis' (VMH) was proposed to demonstrate the evolution of strategies in plant viruses to enhance their transmission to new hosts through direct effects on insect vector behavior and/or physiology. However, the aphid vectors used in previous studies were mostly obtained by feeding on virus-infected plants and as a result, it was difficult to eliminate the confounding effects of infected host plants. Furthermore, the mechanisms of the direct effects of plant viruses on insect vectors have rarely been examined comprehensively. RESULTS: We fed Sitobion avenae on an artificial diet infused with a purified suspension of Barley yellow dwarf virus (BYDV) PAV strain to obtain viruliferous aphids. We then examined their growth and reproduction performance, resistance to the parasitoid Aphidius gifuensis Ashmead, and feeding behavior. The results indicate that (1) viruliferous aphids had a shorter life span and a lower relative growth rate at the nymphal stage; (2) A. gifuensis had a lower parasitism rate, mummification rate, and emergence rate in viruliferous aphids; (3) Viruliferous aphids spent more time on non-probing and salivation behavior and had a shorter total duration of penetration and ingestion compared with healthy conspecifics. CONCLUSION: These results suggest that plant virus infection may directly alter vector fitness and behavior that improves plant virus transmission, but not vector growth. These findings highlight the mechanisms of VMH and the ecological significance of vector manipulation by plant viruses, and have implications for plant virus disease and vector management. © 2024 Society of Chemical Industry.

6.
Nanotechnology ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861963

RESUMO

Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2 npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3×1010 cmHz1/2W-1 at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 µs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.

7.
DNA Cell Biol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38771249

RESUMO

Reg3A is upregulated in various cancers and considered a potential target for antitumor treatments. However, the effect of Reg3A in metastasis has been elusive. This study aims to disclose the role of Reg3A overexpression in hepatic metastasis of LoVo colon cancer cells. A stable cell line of LoVo cells overexpressing Reg3A (LoVo-luc-Reg3A), labeled with luc reporter gene, was constructed. Cell proliferation, apoptosis, migration, and invasion were determined using MTT, EdU, Hoechst's staining, flow cytometry, and transwell assays, respectively. Hepatic metastasis of LoVo-luc-Reg3A cells was investigated in BALB/c nude mice. Living bioluminescence imaging, histological examination, and mRNA sequencing (mRNA-seq) were performed to assess the metastatic efficiency and gene expression alteration. Reg3A content was determined by Western blotting and Enzyme-Linked Immunosorbent Assay. Cell attachment capacity was determined in the Matrigel culture. Reg3A overexpression did not promote LoVo cell proliferation or apoptosis, but facilitated cell migration and invasion. In the hepatic metastasis model, Reg3A overexpression increased the number of metastatic colonies. The result of mRNA-seq suggested 349 differentially expressed genes (DEGs) by Reg3A upregulation, many of which were related to colon adenocarcinoma tumorigenesis compared to normal colon tissue. Gene ontology enrichment assay indicated that the DEGs are mainly associated with cell adhesion, leukocyte regulation, extracellular matrix (ECM) remodeling, integrin binding, and STAT protein binding. Reg3A overexpression led to an enrichment of Reg3A protein in local tumor tissue of liver metastasis and ECM/intracellular space in ex vivo cultured cells. However, Reg3A concentration in serum and culture medium was relatively low. Reg3A overexpression also resulted in an increased number of cells that attach to Matrigel, which was attenuated by treatments of siRNA-Reg3A and single-chain variable fragment against Reg3A. Endogenous Reg3A overexpression facilitates hepatic metastasis of LoVo colon cancer cells. The prometastatic effect could be contributed by Reg3A enrichment in ECM, which alters the cell adhesion behavior.

8.
Cureus ; 16(4): e58119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738106

RESUMO

This report presents a clinical case involving the application of a computer-aided design and manufacturing (CAD-CAM) guide to insert miniscrew anchorage at the zygomatic alveolar ridge. A 24-year-old male adult came in with overcrowded teeth and a protruding facial profile, particularly severe overcrowding in the upper teeth and moderate overcrowding in the lower teeth. The orthodontic treatment plan involved extracting four first premolars and adding a mini-implant in the upper jaw to enhance anchorage. A miniscrew was placed in the patient's left zygomatic alveolar ridge using a guide and in the right zygomatic alveolar ridge based on experience. The use of a mini-implant guide improves the accuracy of mini-implant positioning and angulation in the infrazygomatic crest zone, reduces the risk of tooth root damage, and enhances mini-implant stability.

9.
BMC Pregnancy Childbirth ; 24(1): 351, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720272

RESUMO

BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.


Assuntos
Aborto Espontâneo , Biomarcadores , Transferência Embrionária , MicroRNAs , Humanos , Feminino , Gravidez , MicroRNAs/sangue , Adulto , Biomarcadores/sangue , Aborto Espontâneo/sangue , Implantação do Embrião , Aprendizado de Máquina
10.
J Cancer ; 15(11): 3394-3405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817869

RESUMO

CD52 is an important functional regulator involved in the development of human cancer. In this study, the clinical significance and biological function of CD52 in the malignant behavior of non-small cell lung cancer (NSCLC) were explored. In this study, immunohistochemical (IHC) staining was performed to determine the expression pattern of CD52 in NSCLC. Loss of function assays were used to evaluate the biological functions of CD52 in NSCLC cells in vitro and in vivo. Our data indicated that the expression of CD52 was significantly elevated in NSCLC and correlated with the patient prognosis. Functionally, downregulation of CD52 expression significantly suppressed the proliferation, migration, aerobic glycolysis and tumorigenesis of NSCLC cells. Moreover, CD52 regulated aerobic glycolysis of NSCLC cells through the AKT pathway. Furthermore, aerobic glycolysis induced by 2-DG inhibited the proliferation of NSCLC cells. In conclusion, CD52 knockdown inhibited aerobic glycolysis and malignant behavior of NSCLC cells through AKT signaling pathway, which may be employed in an alternative therapeutic target for NSCLC.

11.
Environ Res ; : 119273, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821465

RESUMO

Insecticide resistance poses a significant challenge in managing generalist herbivores such as the tobacco cutworm (TCW), Spodoptera litura. This study investigates the potential risks associated with using the novel diamide insecticide tetraniliprole to control TCW. A tetraniliprole-resistant strain was developed through twelve generations of laboratory selection, indicating an intermediate risk of resistance development. Field monitoring in China revealed a significant incidence of resistance, particularly in the Nanchang (NC) population (>100-fold). Tetraniliprole showed moderate to high cross-resistance to multiple insecticides and was autosomally inherited with incomplete dominance, controlled by multiple genes, some of which belong to the cytochrome P450 family associated with enhanced detoxification. Life table studies indicated transgenerational hormesis, stimulating TCW female fecundity and increasing population net reproduction rates (R0). These findings suggest a potential for pest resurgence under tetraniliprole use. The integrated risk assessment provides a basis for the sustainable management of TCW using tetraniliprole.

12.
Sci Transl Med ; 16(743): eadk5395, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630847

RESUMO

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system's sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.


Assuntos
Aprendizado Profundo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lesões Pré-Cancerosas , Humanos , Pessoa de Meia-Idade , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Estudos Prospectivos , Lesões Pré-Cancerosas/patologia
13.
J Hazard Mater ; 470: 134196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603907

RESUMO

The secondary outbreak of cyanobacteria after algicide treatment has been a serious problem to water ecosystems. Hydrogen peroxide (H2O2) is an algaecide widely used in practice, but similar re-bloom problems are inevitably encountered. Our work found that Microcystis aeruginosa (M. aeruginosa) temporarily hibernates after H2O2 treatment, but there is still a risk of secondary outbreaks. Interestingly, the dormant period was as long as 20 and 28 days in 5 mg L-1 and 20 mg L-1 H2O2 treatment groups, respectively, but the photosynthetic activity was both restored much earlier (within 14 days). Subsequently, a quantitative imaging flow cytometry-based method was constructed and confirmed that the re-bloom had undergone two stages including first recovery and then re-division. The expression of ftsZ and fabZ genes showed that M. aeruginosa had active transcription processes related to cell division protein and fatty acid synthesis during the dormancy stat. Furthermore, metabolomics suggested that the recovery of M. aeruginosa was mainly by activating folate and salicylic acid synthesis pathways, which promoted environmental stress resistance, DNA synthesis, and cell membrane repair. This study reported the comprehensive mechanisms of secondary outbreak of M. aeruginosa after H2O2 treatment. The findings suggest that optimizing the dosage and frequency of H2O2, as well as exploring the potential use of salicylic acid and folic acid inhibitors, could be promising directions for future algal control strategies.


Assuntos
Peróxido de Hidrogênio , Microcystis , Microcystis/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Ácido Fólico , Ácido Salicílico/farmacologia , Proteínas de Bactérias/genética
14.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685219

RESUMO

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Pirazóis , Piridazinas , ortoaminobenzoatos , Animais , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Piridazinas/farmacologia , Resistência a Inseticidas/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Pirazóis/farmacologia , Filogenia , Neonicotinoides/farmacologia , Técnicas de Silenciamento de Genes , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Ivermectina/farmacologia , Ivermectina/toxicidade
15.
Int J Biol Macromol ; 265(Pt 2): 131056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522686

RESUMO

Bemisia tabaci is a formidable insect pest worldwide, and exhibits significant resistance to various insecticides. Flupyradifurone is one novel butenolide insecticide and has emerged as a new weapon against B. tabaci, but field-evolved resistance to this insecticide has become a widespread concern. To unravel the mechanisms of field-evolved flupyradifurone resistance, we conducted a comprehensive investigation into susceptibility of twenty-one field populations within the Beijing-Tianjin-Hebei Region of China. Alarmingly, thirteen of these populations displayed varying degrees of resistance, ranging from low to medium levels, and building upon our prior findings, we meticulously cloned and characterized the CYP6CX4 gene in B. tabaci. Our investigations unequivocally confirmed the association between CYP6CX4 overexpression and flupyradifurone resistance in three of the thirteen resistant strains via RNA interference. To further validate our findings, we introduced CYP6CX4 overexpression into a transgenic Drosophila melanogaster line, resulting in a significant development of resistance to flupyradifurone in D. melanogaster. Additionally, homology modeling and molecular docking analyses showed the stable binding of flupyradifurone to CYP6CX4, with binding free energy of -6.72 kcal mol-1. Collectively, our findings indicate that the induction of CYP6CX4 exerts one important role in detoxification of flupyradifurone, thereby promoting development of resistance in B. tabaci.


Assuntos
4-Butirolactona/análogos & derivados , Hemípteros , Inseticidas , Piridinas , Animais , Inseticidas/farmacologia , Inseticidas/química , Drosophila melanogaster , Simulação de Acoplamento Molecular , Hemípteros/genética , China , Neonicotinoides
16.
Inorg Chem ; 63(13): 5961-5971, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494631

RESUMO

Titanium-oxo cluster (TOC)-based metal-organic frameworks (MOFs) have received considerable attention in recent years due to their ability to expand the application of TOCs to fields that require highly stable frameworks. Herein, a new cyclic TOC formulated as [Ti6O6(OiPr)8(TTFTC)(phen)2]2 (1, where TTFTC = tetrathiafulvalene tetracarboxylate and phen = phenanthroline) was crystallographically characterized. TOC 1 takes a rectangular ring structure with two phen-modified Ti6 clusters as the width and two TTFTC ligands as the length. An intracluster ligand-to-ligand (TTF-to-phen) charge transfer in 1 was found for TOCs for the first time. Compound 1 undergoes topotactic conversion to generate stable TOC-MOF P1, in which the rectangular framework in 1 formed by a TOC core and ligands is retained, as verified by comprehensive characterization. P1 shows an efficient and rapid selective adsorption capacity for cationic dyes. The experimental adsorption capacity (qex) of P1 reaches a value of up to 789.2 mg/g at 298 K for the crystal violet dye, which is the highest among those of various adsorbents. The calculated models are first used to reveal the structure-property relationship of the cyclic host to different guest dyes. The results further confirmed the host MOF structure of P1.

17.
Pestic Biochem Physiol ; 199: 105773, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458680

RESUMO

Chemical signals play a central role in mediating insect feeding and reproductive behavior, and serve as the primary drivers of the insect-plant interactions. The detection of chemical signals, particularly host plant volatiles, relies heavily on the insect's complex olfactory system. The Bemisia tabaci cryptic species complex is a group of globally important whitefly pests of agricultural and ornamental crops that have a wide range of host plants, but the molecular mechanism of their host plant recognition is not yet clear. In this study, the odorant coreceptor gene of the Whitefly MEAM1 cryptic species (BtOrco) was cloned. The coding sequence of BtOrco was 1413 bp in length, with seven transmembrane structural domains, and it was expressed primarily in the heads of both male and female adult whiteflies, rather than in other tissues. Knockdown of BtOrco using transgenic plant-mediated RNAi technology significantly inhibited the foraging behavior of whiteflies. This inhibition was manifested as a reduced percentage of whiteflies responding to the host plant and a prolonged foraging period. Moreover, there was a substantial suppression of egg-laying activity among adult female whiteflies. These results indicate that BtOrco has the potential to be used as a target for the design of novel active compounds for the development of environmentally friendly whitefly control strategies.


Assuntos
Hemípteros , Animais , Feminino , Hemípteros/genética , Oviposição , Plantas Geneticamente Modificadas , Interferência de RNA
18.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494840

RESUMO

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Assuntos
Doenças do Sistema Digestório , Doença de Parkinson , Humanos , Dopamina/metabolismo , Receptores Dopaminérgicos , Doença de Parkinson/metabolismo , Neurotransmissores
19.
Chin Med ; 19(1): 53, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519940

RESUMO

BACKGROUND: Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS: With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS: Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1ß), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-ß1 (TGF-ß1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION: IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.

20.
Appl Opt ; 63(4): 927-939, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437389

RESUMO

Phase measuring profilometry (PMP) has been widely used in industries for three-dimensional (3D) shape measurement. However, phase information is often lost due to image saturation results from high-reflection object surfaces, leading to subsequent 3D reconstruction errors. To address the problem, we propose an adaptive phase retrieval algorithm that can accurately fit the sinusoidal fringes damaged by high reflection in the saturated regions to retrieve the lost phase information. Under the proposal, saturated regions are first identified through a minimum error thresholding technique to narrow down regions of interest and so that computation costs are reduced. Then, images with differing exposures are fused to locate peak-valley coordinates of the fitting sinusoidal fringes. And the corresponding values of peak-valley pixels are obtained based on a least squares method. Finally, an adaptive piecewise sine function is constructed to recover the sinusoidal fringe pattern by fitting the pattern intensity distribution. And the existing PMP technology is used to obtain phase information from the retrieved sinusoidal fringes. To apply the developed method, only one (or two) image with different exposure times is needed. Compared with existing methods for measuring reflective objects, the proposed method has the advantages of short operation time, reduced system complexity, and low demand on hardware equipment. The effectiveness of the proposed method is verified through two experiments. The developed methodology provides industry an alternative way to measure high-reflection objects in a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...