Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 62(1): 77-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37249716

RESUMO

PIK3CA mutations have important therapeutic and prognostic implications in various cancer types. However, highly sensitive detection of PIK3CA hotspot mutations in heterogeneous tumor samples remains a challenge in clinical settings. To establish a rapid PCR assay for highly sensitive detection of multiple PIK3CA hotspot mutations. We described a novel melting curve analysis-based assay using looping-out probes that can enrich target mutations in the background of excess wild-type and concurrently reveal the presence of mutations. The analytical and clinical performance of the assay were evaluated. The developed assay could detect 10 PIK3CA hotspot mutations at a mutant allele fraction of 0.05-0.5% within 2 h in a single step. Analysis of 82 breast cancer tissue samples revealed 43 samples with PIK3CA mutations, 28 of which were confirmed by Sanger sequencing. Further testing of 175 colorectal cancer tissue samples showed that 24 samples contained PIK3CA mutations and 19 samples were confirmed by Sanger sequencing. Droplet digital PCR supported that all mutation-containing samples undetected by sequencing contained mutations with a low allele fraction. The rapidity, ease of use, high sensitivity and accuracy make the new assay a potential screening tool for PIK3CA mutations in clinical laboratories.


Assuntos
Neoplasias , Humanos , Análise Mutacional de DNA , Classe I de Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Mutação
2.
Lab Invest ; 104(2): 100300, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042496

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissues are the primary source of DNA for companion diagnostics (CDx) of cancers. Degradation of FFPE tissue DNA and inherent tumor heterogeneity constitute serious challenges in current CDx assays. To address these limitations, we introduced sequence artifact elimination and mutation enrichment to MeltArray, a highly multiplexed PCR approach, to establish an integrated protocol that provides accuracy, ease of use, and rapidness. Using PIK3CA mutations as a model, we established a MeltArray protocol that could eliminate sequence artifacts completely and enrich mutations from 23.5- to 59.4-fold via a single-reaction pretreatment step comprising uracil-DNA-glycosylase excision and PCR clamping. The entire protocol could identify 13 PIK3CA hotspot mutations of 0.05% to 0.5% mutant allele fractions within 5 hours. Evaluation of 106 breast cancer and 40 matched normal FFPE tissue samples showed that all 47 PIK3CA mutant samples were from the cancer tissue, and no false-positive results were detected in the normal samples. Further evaluation of 105 colorectal and 40 matched normal FFPE tissue samples revealed that 11 PIK3CA mutants were solely from the cancer sample. The detection results of our protocol were consistent with those of the droplet digital PCR assays that underwent sequence artifact elimination. Of the 60 colorectal samples with next-generation sequencing results, the MeltArray protocol detected 2 additional mutant samples with low mutant allele fractions. We conclude that the new protocol provides an improved alternative to current CDx assays for detecting tumor mutations in FFPE tissue DNA.


Assuntos
Artefatos , Neoplasias Colorretais , Humanos , Inclusão em Parafina , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase Multiplex , DNA , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Formaldeído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...