Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 41(3): 290-296, 2023 Jun 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37277795

RESUMO

OBJECTIVES: This study aimed to analyze the application value of a modified tragus edge incision and transmasseteric anteroparotid approach to condyle reconstruction. METHODS: Condyle reconstruction was performed in 16 patients (9 females and 7 males) with modified tragus edge incision and transmasseteric anteroparotid approach. After regular follow-up, the function of condyle reconstruction was evaluated by clinical indicators, such as parotid salivary fistula, facial nerve function, mouth opening, occlusal relationship, and facial scar. The morphology of rib graft rib cartilage was evaluated by imaging indicators, such as panoramic radiography, CT, and three-dimensional CT image reconstruction. RESULTS: At 6-36 months postoperative follow-up, all patients had good recovery of facial appearance, concealed incisional scar, no parotid salivary fistula, good mouth opening, and occlusion. One case had temporary facial paralysis and recovered after treatment. Radiographic evaluation further showed that costochondral graft survived in normal anatomic locations. CONCLUSIONS: The modified tragus edge incision and transmasseteric anteroparotid approach can effectively reduce parotid salivary fistula and facial nerve injury in condylar reconstruction. The surgical field was clearly exposed, and the incision scar was concealed without increasing the incidence of other complications. Thus, this approach is worthy of clinical promotion.


Assuntos
Fraturas Mandibulares , Procedimentos Cirúrgicos Bucais , Masculino , Feminino , Humanos , Côndilo Mandibular/diagnóstico por imagem , Côndilo Mandibular/cirurgia , Cicatriz/cirurgia , Fixação Interna de Fraturas/métodos , Fraturas Mandibulares/cirurgia , Procedimentos Cirúrgicos Bucais/métodos , Resultado do Tratamento
2.
J Gene Med ; 25(5): e3481, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36782035

RESUMO

BACKGROUND: Osteoporosis (OP) is a metabolic bone disease involving reduced bone mass. Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Emerging evidence suggests that methyltransferase-like 3 (METTL3) plays a significant role in bone development and metabolism. Therefore, this study investigates changes to METTL3 in the osteogenic differentiation of adipose stem cells in osteoporotic rats (OP-ASCs) and explores ways to enhance their osteogenic ability. METHODS: An animal model of osteoporosis was established by removing both ovaries in rats. Real-time PCR and western blotting were performed to detect the expression of METTL3 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Furthermore, alkaline phosphatase staining was used to confirm the osteogenic potential of stem cells. Mettl3 small interfering RNA and Mettl3 overexpression lentivirus were used to assess the role of METTL3 in osteogenic differentiation of ASCs and OP-ASCs. RESULTS: The osteogenic differentiation capacity and Mettl3 expression significantly decreased in OP-ASCs. Moreover, Mettl3 silencing down-regulated the osteogenic ability of ASCs, and overexpression of Mettl3 recovered the impaired osteogenic capacity in OP-ASCs in vitro. CONCLUSION: The Mettl3 expression levels and osteogenic potential of OP-ASCs decreased. However, overexpression of METTL3 rescued the osteogenic ability of OP-ASCs, providing a new target for treatment of osteoporotic bone defects.


Assuntos
Osteogênese , Osteoporose , Ratos , Animais , Tecido Adiposo , Diferenciação Celular , Células-Tronco , Osteoporose/metabolismo , Metiltransferases , Células Cultivadas
3.
Cell Signal ; 87: 110138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461277

RESUMO

BACKGROUND: The osteogenic differentiation ability of adipose-derived stem cells (ASCs) is attenuated in type 2 diabetic osteoporosis (Dop) mice. Several studies suggest autophagy and Notch signaling pathway play vital roles in cell proliferation, differentiation, and osteogenesis. However, the mechanisms of autophagy and Notch signaling in the osteogenic differentiation of Dop ASCs were unclear. Thus, it is meaningful to reveal potential correlations between autophagy, Notch signaling, and osteogenesis, and explore involved molecular mechanisms in Dop ASCs. MATERIALS AND METHODS: The diabetic osteoporosis C57BL/6 mouse model, which was confirmed by micro-CT and HE & Masson staining, was established through high-sugar and high-fat diet and streptozotocin injection. ASCs were obtained from the inguinal subcutaneous fat of Dop mice. The multi-differentiation potential of ASCs was evaluated by staining with Alizarin Red (osteogenesis), Oil Red O (adipogenesis), and Alcian blue (chondrogenesis). Cell viability was assessed by Cell Counting Kit-8 assay. Torin1, an inhibitor of mTOR, was used to stimulate the autophagy signaling pathway. DAPT, a γ-secretase inhibitor, was used to suppress Notch signaling pathway activity. Gene and protein expression of autophagy, Notch signaling pathway, and osteogenic factors were detected by real-time quantitative PCR, western blot, and immunofluorescence microscopy. RESULTS: Our findings showed autophagy and osteogenic differentiation ability of Dop ASCs exhibited downward trends that were both rescued by Torin1. Notch signaling was suppressed in Dop ASCs, but upregulated when autophagy was activated. After activation of autophagy, DAPT treatment led to decreased Notch signaling pathway activation and attenuated osteogenic differentiation ability in Dop ASCs. CONCLUSIONS: Downregulated autophagy suppressed Notch signaling, leading to a reduced osteogenic differentiation capacity of Dop ASCs, and Torin1 can rescue this process by activating autophagy. Our findings contribute to understanding the mechanism underlying impairment of the osteogenic differentiation ability of Dop ASCs.


Assuntos
Diabetes Mellitus , Osteoporose , Tecido Adiposo/metabolismo , Animais , Autofagia , Diferenciação Celular/genética , Células Cultivadas , Diabetes Mellitus/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/genética , Osteoporose/metabolismo , Transdução de Sinais , Células-Tronco
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 423-429, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34018360

RESUMO

OBJECTIVE: To investigate the differences in the osteogenic capacity of osteoporotic adipose-derived stem cells (OP-ASCs) and normal control adipose-derived stem cells (Ctrl-ASCs), and to examine the expression levels of RNA methyltransferase like 14 (Mettl14) and the Notch signaling molecule 1 (Notch1). METHODS: The osteoporosis (OP) model of SD rats was established with ovariectomy (OVX). Micro-CT, HE staining and Masson staining were performed to identify the successful establishment of the OP model, OP-ASCs and Ctrl-ASCs were isolated and cultured adherently. Then, the three-way differentiation capacity of the adipose-derived stem cells (ASCs) was determined through alizarin red staining, alcian blue staining and oil red O staining and flow cytometry was conducted to examine the surface antigens CD29, CD44, CD90, CD31, CD34, and CD45. Alizarin red staining and comparison of the mRNA and protein expression of Run-related transcription factor 2 (Runx2) were done to explore the differences in osteogenic potential of OP-ASCs and Ctrl-ASCs. Real-time PCR and Western blot were performed to explore the expression differences of Mettl14 and Notch1 at mRNA and protein levels between OP-ASCs and Ctrl-ASCs. RESULTS: Micro-CT, HE and Masson staining results showed that the number of trabecular bone decreased and the spacing increased in the tibias of the osteoporosis group (OP group) compared with those of the control group (Ctrl group), indicating that the OP model was established successfully. Three-way differentiation and flow cytometry results confirmed the successful isolation and culture of ASCs. After osteogenic induction, alizarin red staining showed that OP-ASCs had fewer number and more scattered distribution of mineralized nodules than Ctrl-ASCs did. The expression of Runx2 in OP-ASCs was lower than that in Ctrl-ASCs ( P<0.05). Mettl14 as well as Notch1 showed lower expression in OP-ASCs than they did in Ctrl-ASCs ( P<0.05). CONCLUSION: The osteogenic capacity of OP-ASCs was lower compared with that of Ctrl-ASCs, Mettl14 expression of OP-ASCs was decreased compared with that of Ctrl-ASCs, and the Notch signaling pathway was inhibited in OP-ASCs. The study helps build the foundation for further investigation in the specific mechanisms of Mettl14 and Notch1 during osteogenic differentiation of OP-ASCs.


Assuntos
Osteogênese , Células-Tronco , Adipócitos , Tecido Adiposo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Metiltransferases , Ratos , Ratos Sprague-Dawley , Receptor Notch1/genética
5.
J Phys Chem A ; 125(4): 903-919, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33470828

RESUMO

Efficient charge-transfer (CT) phosphorescence in the near-IR (NIR) spectral region is reported for four substituted Ru-(R-dipyrrinato) complexes, [Ru(bpy)2(R-dipy)](PF6), where bpy is 2,2'-bipyridine and the substituent R is phenyl (ph), 2,4,6-trimethylphenyl, 4-carboxyphenyl (HOOC-ph), or 4-pyridinyl. The experimentally determined phosphorescence efficiency, ιem(p) = kRAD(p)/(νem(p))3 (where kRAD(p) and νem(p) are the phosphorescence rate constant and the phosphorescence frequency, respectively), of the [Ru(bpy)2(R-dipy)]+ complexes was approximately double that of [Ru(bpy)(Am)4]2+ complexes (Am = ammine ligand) in the NIR region. Density functional theory (DFT) modeling indicated two strikingly different electronic configurations of the triplet emitting state (Te) in the two types of complexes. The Te of [Ru(bpy)2(R-dipy)]+ complexes shows a CT-type corresponding to the metal-to-ligand charge transfer (MLCT)-(Ru-(R-dipy)) and the ππ*-(R-dipy) moiety configurations, and the Te state in the [Ru(bpy)(Am)4]2+ complexes corresponds to an approximately MLCT excited state consisting of mostly MLCT-(Ru-bpy) with a minimal ππ*(bpy) contribution. DFT modeling also indicated that the low-energy singlet excited states in the Te geometry (Sn(T)) of the [Ru(bpy)2(ph-dipy)]+ complex consist of numerous CT-Sn(T)-type states of the Ru-dipy and Ru-bpy moieties, whereas the [Ru(bpy)(Am)4]2+ ions show quite simple MLCT-Sn(T)-type states of the Ru-bpy moiety. Based on experimental observations, DFT modeling, and the plain spin-orbit coupling (SOC) principle, we conclude that the remarkably high ιem(p) amplitudes of the [Ru(bpy)2(R-dipy)]+ complexes relative to those of [Ru(bpy)(Am)4]2+ complexes can be attributed to the relatively substantial contribution of intrinsic SOC-mediated intensity stealing from the numerous low-energy CT-type Sn(T) states.

6.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 38(4): 380-384, 2020 Aug 01.
Artigo em Chinês | MEDLINE | ID: mdl-32865355

RESUMO

OBJECTIVE: To investigate the clinical efficacy of a modified paramedian lower lip-submandibular approach for maxillary (subtotal) total resection. METHODS: Eleven patients of maxillary tumors underwent maxillary (subtotal) total resection through the modified paramedian lower lip-submandibular approach. Clinical follow-up visits were conducted to evaluate appearance restoration, facial nerve functional status, parotid gland functional status, and orbital region complication. RESULTS: During the follow-up period of 6-36 months, the appearance of all 11 patients recovered well. All cases presented hidden scars. No facial nerve and parotid duct injury, lower eyelid edema, lower eyelid ectropion, or epiphora in all cases was observed. CONCLUSIONS: Applying modified paramedian lower lip-submandibular approach to maxillary (subtotal) total resection effectively reduces incidence of orbital region complications including lower eyelid edema, lower eyelid ectropion, and epiphora, which often occur to traditional approach. The modified approach produces more subtle scars than other methods and should be applied to treatment of maxillary (subtotal) total resection.


Assuntos
Lábio , Neoplasias Maxilares , Nervo Facial , Humanos , Maxila , Retalhos Cirúrgicos
7.
Cell Prolif ; 51(5): e12471, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30014569

RESUMO

OBJECTIVES: Diabetes mellitus-related osteoporosis is caused by the imbalance between bone absorption and bone formation. Advanced glycation end products (AGEs) are considered a cause of diabetic osteoporosis. Although adipose-derived stem cells (ASCs) are promising adult stem cells in bone tissue regeneration, the ability of osteogenesis of ASCs in diabetic environment needs to explore. This study aimed to investigate the influence of AGEs on the osteogenic potential of ASCs and to explore the signalling pathways involved in its effect. MATERIALS AND METHODS: ASCs were isolated from inguinal fat and cultured in osteogenic media with or without AGEs and FPS-ZM1, an inhibitor of receptor for AGEs (RAGE). Alizarin red-S, Oil Red-O and Alcian blue staining were used to confirm osteogenic, adipogenic and chondrogenic potential of ASCs, respectively. Immunofluorescence, western blotting and real-time PCR were used to measure changes in markers of osteogenic differentiation, DNA methylation and Wnt signalling. RESULTS: The multipotentiality of ASCs was confirmed. Treated with AGEs, OPN and RUNX2 expressions of ASCs were reduced and there was a noticeable loss of mineralization, concomitant with an increase in the expression of RAGE, 5-MC, DNMT1 and DNMT3a. AGEs treatment also led to a loss of Wnt signalling pathway markers, including ß-Catenin and LEF1, with an increase in GSK-3ß. Treatment with the RAGE inhibitor, FPS-ZM1, rescued AGEs-induced loss of osteogenic potential, modulated DNA methylation and upregulated Wnt signalling in ASCs. CONCLUSIONS: Our results demonstrate that AGEs-RAGE signalling inhibits the osteogenic potential of ASCs under osteoinductive conditions by modulating DNA methylation and Wnt signalling. FPS-ZM1 can rescue the negative effects of AGEs and provide a possible treatment for bone tissue regeneration in patients with diabetic osteoporosis.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Produtos Finais de Glicação Avançada/farmacologia , Osteogênese/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Diabetes Mellitus/metabolismo , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
8.
Curr Stem Cell Res Ther ; 13(7): 547-567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28595567

RESUMO

Cartilage tissue engineering is an emerging technique for the regeneration of cartilage tissue damaged as a result of trauma or disease. As the propensity for healing and regenerative capabilities of articular cartilage are limited, its repair remains one of the most challenging issues of musculoskeletal medicine. Clinical treatments intended to promote the success and complete repair of partial- and fullthickness articular cartilage defects are still unpredictable. However, one of the most exciting theories is that treatment of damaged articular cartilage can be realized with cartilage tissue engineering. This notion has prompted tissue engineering research involving cells, stimulating factors and scaffolds, either alone or in combination. With these perspectives, this review aims to present a summary of cartilage tissue engineering including development, recent progress, and major steps taken toward the regeneration of functional cartilage tissue. In addition, we discussed the role of stimulating factors, including growth factors, gene therapies, biophysical stimuli, and bioreactors, as well as scaffolds, including natural, synthetic, and nanostructured scaffolds, in cartilage tissue regeneration. Special emphasis was placed on cell source, including chondrocytes, fibroblasts, and stem cells, as an important component of cartilage tissue engineering techniques. In conclusion, continued development of cartilage tissue engineering will support future applications for patients suffering from diseased cartilage tissue problems and osteoarthritis.


Assuntos
Biopolímeros/farmacologia , Doenças das Cartilagens/terapia , Cartilagem Articular/efeitos dos fármacos , Condrócitos/citologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Biopolímeros/química , Doenças das Cartilagens/patologia , Doenças das Cartilagens/cirurgia , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Diferenciação Celular , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Regeneração/fisiologia , Engenharia Tecidual , Alicerces Teciduais
9.
Curr Stem Cell Res Ther ; 11(3): 216-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25986621

RESUMO

Mesenchymal stem cells (MSCs) arise from a variety of tissues, including bone marrow and adipose tissue and, accordingly, have the potential to differentiate into multiple cell types, including osteoblasts and adipocytes. Research on MSCs to date has demonstrated that a large number of transcription factors and ectocytic or intrastitial signaling pathways regulate adipogenic and osteogenic differentiation. A theoretical inverse relationship exists in adipogenic and osteogenic lineage commitment and differentiation, such that signaling pathways induce adipogenesis at the expense of osteogenesis and vice versa. For example, peroxisome proliferator-activated receptor γ(PPARγ), which belongs to the nuclear hormone receptor superfamily of ligand-activated transcription factors, is known to function as a master transcriptional regulator of adipocyte differentiation, and inhibit osteoblast differentiation. Moreover, recent studies have demonstrated that inducers of osteogenic differentiation, such as bone morphogenetic protein (BMP) and Wnt, inhibit the function of PPARγ transactivation during MSC differentiation towards adipocytes through a variety of mechanisms. To illustrate this, the canonical Wnt/ß-catenin pathway represses expression of PPARγ mRNA, whereas the noncanonical Wnt pathway activates histone methyltransferases that inhibit PPARγ transactivation via histone H3 lysine 9 (H3K9) methylation of its target genes. The role of microRNAs (miRNAs) in adipogenesis and osteoblastogenesis is garnering increased attention, and studies in this area have shed light on the integration of miRNAs with Wnt signaling and transcription factors such as Runx2 and PPARγ. This review summarizes our current understanding of the mechanistic basis of these signaling pathways, and indicates future clinical applications for stem cell-based cell transplantation and regenerative therapy.


Assuntos
Adipogenia/fisiologia , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , PPAR gama/metabolismo , Via de Sinalização Wnt/fisiologia , Adipócitos/citologia , Adipogenia/genética , Células da Medula Óssea/citologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , MicroRNAs/genética , Osteoblastos/citologia , Osteogênese/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
10.
Inorg Chem ; 50(23): 11965-77, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22066683

RESUMO

The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2''-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...