Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 132, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580797

RESUMO

Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme. Individuals who have Down syndrome are also at significantly increased risk of developing early-onset Alzheimer's disease (EOAD). The impact of the additional copy of CSTB on Alzheimer's disease development in people who have Down syndrome is not well understood. Here we compared the biology of cathepsin B and CSTB in individuals who had Down syndrome and Alzheimer's disease, with disomic individuals who had Alzheimer's disease or were ageing healthily. We find that the activity of cathepsin B enzyme is decreased in the brain of people who had Down syndrome and Alzheimer's disease compared with disomic individuals who had Alzheimer's disease. This change occurs independently of an alteration in the abundance of the mature enzyme or the number of cathepsin B+ cells. We find that the abundance of CSTB is significantly increased in the brains of individuals who have Down syndrome and Alzheimer's disease compared to disomic individuals both with and without Alzheimer's disease. In mouse and human cellular preclinical models of Down syndrome, three-copies of CSTB increases CSTB protein abundance but this is not sufficient to modulate cathepsin B activity. EOAD and Alzheimer's disease-Down syndrome share many overlapping mechanisms but differences in disease occur in individuals who have trisomy 21. Understanding this biology will ensure that people who have Down syndrome access the most appropriate Alzheimer's disease therapeutics and moreover will provide unique insight into disease pathogenesis more broadly.


Assuntos
Doença de Alzheimer , Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/patologia , Doença de Alzheimer/patologia , Cistatina B/genética , Catepsina B , Microglia/metabolismo
2.
Int J Bioprint ; 9(5): 769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457935

RESUMO

Osteoporotic fracture is one of the most serious complications of osteoporosis. Most fracture sites have bone defects, and restoring the balance between local osteogenesis and bone destruction is difficult during the repair of osteoporotic bone defects. In this study, we successfully fabricated three-dimensional (3D)-printed biodegradable magnesium alloy (Mg-Nd-Zn-Zr) scaffolds and prepared a zoledronic acid-loaded ceramic composite coating on the surface of the scaffolds. The osteogenic effect of Mg and the osteoclast inhibition effect of zoledronic acid were combined to promote osteoporotic bone defect repair. In vitro degradation and drug release experiments showed that the coating significantly reduced the degradation rate of 3D-printed Mg alloy scaffolds and achieved a slow release of loaded drugs. The degradation products of drug-loaded coating scaffolds can promote osteogenic differentiation of bone marrow mesenchymal stem cells as well as inhibit the formation of osteoclasts and the bone resorption by regulating the expression of related genes. Compared with the uncoated scaffolds, the drug-coated scaffolds degraded at a slower rate, and more new bone grew into these scaffolds. The healing rate and quality of the osteoporotic bone defects significantly improved in the drug-coated scaffold group. This study provides a new method for theoretical research and clinical treatment using functional materials for repairing osteoporotic bone defects.

3.
Int J Bioprint ; 9(2): 654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065664

RESUMO

The repair and reconstruction of bone defects are still major problems to be solved in the field of orthopedics. Meanwhile, 3D-bioprinted active bone implants may provide a new and effective solution. In this case, we used bioink prepared from the patient's autologous platelet-rich plasma (PRP) combined with polycaprolactone/ß-tricalcium phosphate (PCL/ß-TCP) composite scaffold material to print personalized PCL/ß-TCP/PRP active scaffolds layer by layer through 3D bioprinting technology. The scaffold was then applied in the patient to repair and reconstruct bone defect after tibial tumor resection. Compared with traditional bone implant materials, 3D-bioprinted personalized active bone will have significant clinical application prospects due to its advantages of biological activity, osteoinductivity, and personalized design.

4.
J Orthop Translat ; 37: 113-125, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36262960

RESUMO

Background: Stable fixation is crucial in fracture treatment. Currently, optimal fracture fixation devices with osteoinductivity, mechanical compatibility, and corrosion resistance are urgently needed for clinical practice. Niobium (Nb), whose mechanical properties are similar to those of bone tissue, has excellent biocompatibility and corrosion resistance, so it has the potential to be the most appropriate fixation material for internal fracture treatment. However, not much attention has been paid to the use of Nb in the area of clinical implants. Yet its role and mechanism of promoting fracture healing remain unclear. Hence, this study aims at elucidating on the effectiveness of Nb by systematically evaluating its osteogenic performance via in vivo and ex vivo tests. Methods: Systematic in vivo and in vitro experiments were conducted to evaluate the osteogenic properties of Nb. In vitro experiments, the biocompatibility and osteopromoting activity of Nb were assessed. And the osteoinductive activity of Nb was assessed by alizarin red, ALP staining and PCR test. In vivo experiments, the effectiveness and biosafety of Nb in promoting fracture healing were evaluated using a rat femoral fracture model. Through the analysis of gene sequencing results of bone scab tissues, the upregulation of PI3K-Akt pathway expression was detected and it was verified by histochemical staining and WB experiments. Results: Experiments in this study had proved that Nb had excellent in-vitro cell adhesion and proliferation-promoting effects without cytotoxicity. In addition, ALP activity, alizarin red staining and semi-quantitative analysis in the Nb group had indicated its profound impact on enhancing osteogenic differentiation of MC3T3-E1 cells. We also found that the use of Nb implants can accelerate fracture healing compared to that with Ti6Al4V using an animal model of femur fracture in rats, and the biosafety of Nb was confirmed in vivo via histological evaluation. Furthermore, we found that the osteogenic effects of Nb were achieved through activation of the PIK/Akt3 signalling pathway. Conclusion: As is shown in the present research, Nb possessed excellent biosafety in clinical implants and accelerated fracture healing by activating the PI3K-Akt signalling pathway, which had good prospects for clinical translation, and it can replace titanium alloy as a material for new functional implants.

5.
Front Oncol ; 12: 911596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847857

RESUMO

Sarcomas are rare malignant tumors that may arise from anywhere of the body, such as bone, adipose, muscle and vascular. However, the conventional pathogenesis of sarcomas has not been found. Therefore, there is an urgent need to identify novel therapeutic strategies and improve prognosis effects for sarcomas. Methylation of N6 adenosine (m6A) regulation is a novel proposed regulatory pattern that works in post-transcription level, which was also the most widely distributed methylation modification in eukaryotic mRNA. Growing evidences have demonstrated that m6A modification played an indispensable role in tumorigenesis. Here, we integrated multi-omics data including genetic alterations, gene expression and epigenomics regulation to systematically analysis the regulatory atlas of 21 m6A regulators in sarcoma. Firstly, we investigated the genetic alterations of m6A regulators and found that ~44% TCGA sarcoma patients have genetic mutations. We also investigated the basic annotation of 21 regulators, such as expression correlation and PPI interactions. Then we identified the upstream and downstream regulatory networks of between transcription factors (TFs)/non-coding RNAs and m6A regulators in sarcoma based on motif analysis and gene expression. These results implied that m6A regulator mediated regulatory axes could be used as prognostic biomarkers in sarcoma. Knockdown experiment results revealed that m6A regulators, YTHDF2 and HNRNPA2B1 participated in the cancer cell invasion and metastasis. Moreover, we also found that the expression levels of m6A regulators were related to immune cell infiltration of sarcoma patients.

6.
J Surg Oncol ; 124(3): 420-430, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34086993

RESUMO

BACKGROUND AND OBJECTIVES: The treatment of pelvic tumors is widely recognized to be challenging. The purpose of this study was to evaluate the efficacy of personalized three-dimensional (3D) printing-based limb salvage and reconstruction treatment for pelvic tumors. METHODS: Twenty-eight pelvic tumor patients were enrolled. 3D printing lesion models and osteotomy templates were prepared for surgery planning, prosthesis design, and osteotomy assistance during surgery. 3D printing-based personalized pelvic prostheses were manufactured and used in all 28 patients. Follow-up of postoperative survival, prosthesis survival, imaging examinations, and Musculoskeletal Tumor Society (MSTS) lower limb functional scores were carried out. RESULTS: The mean follow-up period was 32.2 months, during which 16 patients had disease-free survival, 3 survived with the disease, and 9 died. The prostheses were stable, and the mean offset of the center of rotation was 5.48 mm. The prosthesis-bone interface showed good integration. For the 19 surviving patients, the mean MSTS lower limb functional score was 23.2. Postoperative complications included superficial infection in six patients and hip dislocation in three patients. CONCLUSIONS: Personalized 3D printing-based limb salvage and reconstruction was an effective treatment for pelvic tumors. Our patients achieved good early postoperative efficacy and functional recovery.


Assuntos
Salvamento de Membro/instrumentação , Neoplasias Pélvicas/cirurgia , Procedimentos de Cirurgia Plástica/instrumentação , Impressão Tridimensional , Desenho de Prótese/instrumentação , Feminino , Humanos , Salvamento de Membro/métodos , Masculino , Pessoa de Meia-Idade , Osteotomia/métodos , Medicina de Precisão , Desenho de Prótese/métodos , Procedimentos de Cirurgia Plástica/métodos , Estudos Retrospectivos , Resultado do Tratamento
7.
World J Surg Oncol ; 19(1): 98, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820559

RESUMO

BACKGROUND: With the development of medical technology, credible options for defect reconstructions after the resection of benign bone tumors of the lower extremities have become a high priority. As the current reconstructive methods commonly used in clinical practice have some flaws, new methods of reconstruction need to be explored. We aimed to prepare a new kind of bioactive scaffold for the repair of bone defects through a stem cell rapid screening-enrichment-composite technology system developed by our team. Furthermore, we aimed to investigate the curative effects of these bioactive scaffolds. METHODS: Firstly, cell count, trypan blue exclusion rate, and ALP staining were used to evaluate changes in enrichment efficiency, cell activity, and osteogenic ability before and after enrichment. Then, the scaffolds were placed under the skin of nude mice to verify their osteogenic effects in vivo. Finally, the scaffolds were used for the reconstruction of bone defects after operations for benign bone tumors in a patient's lower limb. The healing status of the defect site at 1 and 3 months was assessed by X-ray, and the Musculoskeletal Tumor Society (MSTS) score was applied to reflect the recovery of patient limb function. RESULTS: The system effectively enriched stem cells without affecting the activity and osteogenic abilities of the bone marrow mesenchymal stem cells (BMSCs). Meanwhile, the bioactive scaffolds obtained better osteogenic effects. In patients, the active scaffolds showed better bone integration and healing status, and the patients also obtained higher MSTS scores at 1 and 3 months after surgery. CONCLUSION: As a new technique, the rapid screening-enrichment-composite technology of stem cells demonstrates a better therapeutic effect in the reconstruction of bone defects after surgery for benign bone tumors of the lower extremities, which will further improve patient prognosis.


Assuntos
Neoplasias Ósseas , Células-Tronco Mesenquimais , Animais , Neoplasias Ósseas/cirurgia , Humanos , Extremidade Inferior/cirurgia , Camundongos , Camundongos Nus , Prognóstico
8.
J Orthop Translat ; 31: 102-109, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34976730

RESUMO

BACKGROUND: Thus far, the hip revision surgery has been widely used and promoted, and the technology has been constantly innovated, such as tissue engineering, 3D printing prosthesis, etc. However, traditional standardized prosthesis, allograft, autograft, bone cement and reinforcing ring are still the main treatment methods in the mainstream pelvic defects classification systems for hip revision. In addition, the mainstream classification systems are still mainly focus on the peri-acetabulum, but less on the large-scale complex pelvic defects that widely affecting the regions far away from the acetabulum, which also have a significant impact on the holistic biomechanical properties of pelvis. METHODS: After integrating the design experience of custom prostheses and the understanding of biomechanical properties of pelvis, an innovative pelvic defects classification for custom revision was preliminarily proposed, and was practiced in surgeries. Some typical cases were chosen for elucidation in this study, and two observers each evaluated their CT data independently twice. Intraobserver and interobserver agreement were calculated using the kappa statistic to evaluate the reliability. The pelvis defects were classified into five types and two subtypes. The corresponding reconstruction principles, as the main basis to support the classification, were also described in detail. Prosthesis position examination and Harris hip score were utilized to evaluate the clinical outcome. RESULTS: The installed prostheses resulted in high concordance with preoperative position planning, significantly improved Harris score, low postoperative complication rate and no re-revision case. In addition, The interobserver and intraobserver agreement were both excellent. CONCLUSION: The presenting revision system for complex pelvic defects utilizing 3D-printed custom prosthesis and corresponding classification of pelvic defects can preliminarily guide patients' grouping and prosthesis design, and may potentially provide an innovative, feasible, and efficient basis for complex total hip arthroplasty (THA) revision. TRANSLATIONAL POTENTIAL STATEMENT: This study provides a novel method for prosthetic revision of peri-acetabular pelvic defects, and is expected to systematically improve the efficiency of prosthesis design and surgery in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...