Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15545-15556, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838261

RESUMO

Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.


Assuntos
Membrana Celular , Membrana Celular/metabolismo , Membrana Celular/química , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/química , Dinaminas/metabolismo , Dinaminas/química , Vírus da Influenza A/metabolismo , Espalhamento a Baixo Ângulo , Proteínas Viroporinas
2.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38260291

RESUMO

Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is the M2 viroporin, a proton pump from the influenza A virus which is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging Small-Angle X-ray Scattering (SAXS) structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemi-fission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.

3.
ACS Nano ; 15(10): 15930-15939, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34586780

RESUMO

Neutrophils are crucial for host defense but are notorious for causing sterile inflammatory damage. Activated neutrophils in inflamed tissue can liberate histone H4, which was recently shown to perpetuate inflammation by permeating membranes via the generation of negative Gaussian curvature (NGC), leading to lytic cell death. Here, we show that it is possible to build peptides or proteins that cancel NGC in membranes and thereby suppress pore formation, and demonstrate that they can inhibit H4 membrane remodeling and thereby reduce histone H4-driven lytic cell death and resultant inflammation. As a demonstration of principle, we use apolipoprotein A-I (apoA-I) mimetic peptide apoMP1. X-ray structural studies and theoretical calculations show that apoMP1 induces nanoscopic positive Gaussian curvature (PGC), which interacts with the NGC induced by the N-terminus of histone H4 (H4n) to inhibit membrane permeation. Interestingly, we show that induction of PGC can inhibit membrane-permeating activity in general and "turn off" diverse membrane-permeating molecules besides H4n. In vitro experiments show an apoMP1 dose-dependent rescue of H4 cytotoxicity. Using a mouse model, we show that tissue accumulation of neutrophils, release of neutrophil extracellular traps (NETs), and extracellular H4 all strongly correlate independently with local tissue cell death in multiple organs, but administration of apoMP1 inhibits histone H4-mediated cytotoxicity and strongly prevents organ tissue damage.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Morte Celular , Histonas , Peptídeos/farmacologia
4.
PLoS One ; 16(8): e0253008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370752

RESUMO

Glioblastoma is a malignant brain tumor with poor prognosis that rapidly acquires resistance to available clinical treatments. The herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) system produces the selective elimination of HSVtk-positive cells and is a candidate for preclinical testing against glioblastoma via its ability to regulate proliferation and differentiation. Therefore, in this study, we aimed to establish a plasmid encoding the HSVtk/GCV system driven by a glial fibrillary acidic protein (GFAP) promoter and verify its possibility of neural differentiation of glioblastoma cell line under the GCV challenge. Four stable clones-N2A-pCMV-HSVtk, N2A-pGFAP-HSVtk, U251-pCMV-HSVtk, and U251-pGFAP-HSVtk-were established from neuronal N2A and glioblastoma U251 cell lines. In vitro GCV sensitivity was assessed by MTT assay for monitoring time- and dosage-dependent cytotoxicity. The capability for neural differentiation in stable glioblastoma clones during GCV treatment was assessed by performing immunocytochemistry for nestin, GFAP, and ßIII-tubulin. Under GFAP promoter control, the U251 stable clone exhibited GCV sensitivity, while the neuronal N2A clones were nonreactive. During GCV treatment, cells underwent apoptosis on day 3 and dying cells were identified after day 5. Nestin was increasingly expressed in surviving cells, indicating that the population of neural stem-like cells was enriched. Lower levels of GFAP expression were detected in surviving cells. Furthermore, ßIII-tubulin-positive neuron-like cells were identified after GCV treatment. This study established pGFAP-HSVtk-P2A-EGFP plasmids that successfully ablated GFAP-positive glioblastoma cells, but left neuronal N2A cells intact. These data suggest that the neural differentiation of glioblastoma cells can be promoted by treatment with the HSVtk/GCV system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ganciclovir/farmacologia , Proteína Glial Fibrilar Ácida/genética , Glioblastoma/metabolismo , Proteínas de Neoplasias/genética , Simplexvirus/genética , Timidina Quinase , Proteínas Virais , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/metabolismo , Simplexvirus/enzimologia , Timidina Quinase/antagonistas & inibidores , Timidina Quinase/biossíntese , Timidina Quinase/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/biossíntese , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...