Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893846

RESUMO

This paper reports the vapor pressure and enthalpy of vaporization for a promising phase change material (PCM) guanidinium methanesulfonate ([Gdm][OMs]), which is a typical guanidinium organomonosulfonate that displays a lamellar crystalline architecture. [Gdm][OMs] was purified by recrystallization. The elemental analysis and infrared spectrum of [Gdm][OMs] confirmed the purity and composition. Differential scanning calorimetry (DSC) also confirmed its high purity and showed a sharp and symmetrical endothermic melting peak with a melting point (Tm) of 207.6 °C and a specific latent heat of fusion of 183.0 J g-1. Thermogravimetric analysis (TGA) reveals its thermal stability over a wide temperature range, and yet three thermal events at higher temperatures of 351 °C, 447 °C, and 649 °C were associated with vaporization or decomposition. The vapor pressure was measured using the isothermogravimetric method from 220 °C to 300 °C. The Antoine equation was used to describe the temperature dependence of its vapor pressure, and the substance-dependent Antoine constants were obtained by non-linear regression. The enthalpy of vaporization (ΔvapH) was derived from the linear regression of the slopes associated with the linear temperature dependence of the rate of weight loss per unit area of vaporization. Hence, the temperature dependence of vapor pressures ln Pvap (Pa) = 10.99 - 344.58/(T (K) - 493.64) over the temperature range from 493.15 K to 573.15 K and the enthalpy of vaporization ΔvapH = 157.10 ± 20.10 kJ mol-1 at the arithmetic mean temperature of 240 °C were obtained from isothermogravimetric measurements using the Antoine equation and the Clausius-Clapeyron equation, respectively. The flammability test indicates that [Gdm][OMs] is non-flammable. Hence, [Gdm][OMs] enjoys very low volatility, high enthalpy of vaporization, and non-flammability in addition to its known advantages. This work thus offers data support, methodologies, and insights for the application of [Gdm][OMs] and other organic salts as PCMs in thermal energy storage and beyond.

2.
Innovation (Camb) ; 5(2): 100577, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379786

RESUMO

Heat is almost everywhere. Unlike electricity, which can be easily manipulated, the current ability to control heat is still highly limited owing to spontaneous thermal dissipation imposed by the second law of thermodynamics. Optical illumination and pressure have been used to switch endothermic/exothermic responses of materials via phase transitions; however, these strategies are less cost-effective and unscalable. Here, we spectroscopically demonstrate the glassy crystal state of 2-amino-2-methyl-1,3-propanediol (AMP) to realize an affordable, easily manageable approach for thermal energy recycling. The supercooled state of AMP is so sensitive to pressure that even several megapascals can induce crystallization to the ordered crystal, resulting in a substantial temperature increase of 48 K within 20 s. Furthermore, we demonstrate a proof-of-concept device capable of programable heating with an extremely high work-to-heat conversion efficiency of ∼383. Such delicate and efficient tuning of heat may remarkably facilitate rational utilization of waste heat.

3.
Soft Matter ; 19(34): 6458-6467, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606536

RESUMO

As the cohesive properties (such as the enthalpy of sublimation) of solid organic salts (or ionic liquids, ILs) are unmeasurable, a method of their indirect determination is proposed in this paper. For this purpose, the thermogravimetric analysis (TGA) and differential scanning calorimetric analysis (DSC) were carried out over a wide range of temperatures. In this study, the mathematical relationship of the thermodynamic properties between the liquid and solid phases of ILs is established using the Born-Fajans-Haber cycle, in which the sum of the vaporization enthalpy of ILs, melting enthalpy and the enthalpy of solid-solid phase transition is regarded as the sublimation enthalpy of solid organic salts. With this method, the cohesive properties of tetrabutylammonium bis(trifluoromethanesulfonyl)imide ([N4444][NTf2]), which is an aprotic IL, were successfully obtained. Additionally, the difference between the lattice energy and the cohesive energy was employed to quantitatively calculate the charge separation distance of single ion pair (r12) in the gas phase of ionic liquids for the first time, which can serve as a standard methodology to measure the closeness in distance between the anion and the cation in a gas phase ion pair. The pyrolysis mechanism of [N4444][NTf2] was also explored.

4.
Nanomicro Lett ; 15(1): 165, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386313

RESUMO

Lithium-sulfur (Li-S) batteries have received widespread attention, and lean electrolyte Li-S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur (E/S) ratios on battery energy density and the challenges for sulfur reduction reactions (SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios (< 10 µL mg-1), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li-S battery performance. Finally, an outlook is provided to guide future research on high energy density Li-S batteries.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 4): 367-372, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057028

RESUMO

The title compound, C10H14BrN5O2S, is the bromo-benzene-sulfonamide derivative of the type 2 diabetes drug metformin. The asymmetric unit contains two mol-ecules with almost identical conformations but a different orientation of the bromo-phenyl moiety. Both mol-ecules exhibit intra-molecular N-H⋯N and N-H⋯O hydrogen bonds. The mol-ecular packing features chain formation in the a-axis direction by alternating N-H⋯N and N-H⋯O inter-actions. In addition, ring motifs consisting of four mol-ecules and π-π inter-actions between the phenyl rings contribute to the three-dimensional architecture. A Hirshfeld surface analysis shows that the largest contributions to surface contacts arise from contacts in which H atoms are involved.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36757842

RESUMO

P2-type layered transition-metal oxides with anionic redox reactions are promising cathodes for sodium-ion batteries. In this work, a high-sodium-content P2-type Na7/9Li1/9Mg1/9Cu1/9Mn2/3O2 (NLMC) cathode material is prepared by substituting Li/Mg/Cu for Mn sites in Na2/3MnO2. The Li/Mg ions trigger the anionic redox reaction, while the Cu ions enhance the structure stability during electrochemical cycling. As a result, the oxide has a high reversible capacity of 225 mAh g-1 originating from both cationic and anionic redox activities with a capacity retention of 77% after 100 cycles. The migration energy barrier and Na ion diffusion kinetics are studied using density functional theory (DFT) calculations and the galvanostatic intermittent titration technique. Furthermore, X-ray diffraction, DFT, scanning electron microscopy, and transmission electron microscopy are applied to reveal the structural evolution and charge compensation of NLMC, providing a thorough understanding of the structural and morphology evolution of Na-deficient oxides during cycling. The results are inspiring for the design of a high-Na content P2-type layered oxide cathode for sodium-ion batteries.

7.
Small ; 18(4): e2103561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761518

RESUMO

Cobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP2 -HS, CoP3 -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances. The identical OER performance of these CoPx -HS in alkaline solution is attributed to the similar surface reconstruction to CoOOH. CoP-HS exhibits the best catalytic activity for HER among these CoPx -HS in both acidic and alkaline media, originating from the adjusted electronic density of phosphorus to affect absorption-desorption process on H. Moreover, the calculated ΔGH* based on P-sites of CoP-HS follows a quite similar trend with the normalized overpotential and Tafel slope, indicating the important role of P-sites for the HER process. Moreover, CoP-HS displays good performance (cell voltage of 1.67 V at a current density of 50 mA cm-2 ) and high stability in 1 M KOH. For the first time, this work detailly presents the critical role of phosphorus in cobalt-based phosphides for water splitting, which provides the guidance for future investigations on transition metal phosphides from material design to mechanism understanding.

8.
RSC Adv ; 11(38): 23228-23234, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479796

RESUMO

Phase-dependent dielectric properties and proton conduction of neopentyl glycol (NPG), which is an organic molecular plastic crystal, were studied via variable-temperature broadband dielectric spectroscopy (BDS). Permittivity and conductivity data show the phase transformations of NPG from the crystalline state to the plastic crystalline state at 315 K and then to the molten state at 402 K across the temperature range of 293-413 K. The Vogel temperatures (T v) fitted from the Vogel-Fulcher-Tammann (VFT) equation agree well with the values extrapolated by the Stickel plot (linearized Vogel plot). Impedance and modulus data display a separation of the -Z'' (the imaginary part of the complex impedance) and M'' (the imaginary part of the complex electric modulus) peaks in the crystalline phase. However, they overlap in both the plastic crystalline phase and the molten phase, indicating long-range proton conduction. In both the molten phase and the plastic crystalline phase, the temperature dependence of direct current conductivity (σ dc) obeys the VFT equation very well. While the vehicle mechanism (translational diffusion) is an intrinsic mechanism for ionic or protonic conduction in the molten phase, it is speculated that the Grotthuss mechanism also works due to the self-dissociation of NPG molecules, which are similar to water molecules. In the plastic crystalline phase, the proton hopping mechanism is most likely the underlying ion-conducting mechanism because of the rotational disorder and intrinsic defects (vacancies) of the NPG molecules. In the ordered crystalline phase, the proton conduction is presumed to follow the proton hopping mechanism as determined from the localized relaxation and the temperature dependence of σ dc (Arrhenius behavior).

9.
J Chem Phys ; 152(23): 234504, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571054

RESUMO

The protic ionic liquid diethylmethylammonium methanesulfonate ([DEMA][OMs]) was analyzed in depth by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) under anhydrous conditions. Karl Fischer titration, NMR, and FT-IR spectra confirmed the high purity of [DEMA][OMs]. The melting point (37.7 °C) and the freezing point (14.0 °C) obtained by DSC agree well with the values determined by BDS (40.0 °C and 14.0 °C). The dc conductivity (σdc) above the melting/freezing point obeys the Vogel-Fulcher-Tammann (VFT) equation well, and thus, the proton conduction in [DEMA][OMs] is assumed to be dominated by the vehicle mechanism. In contrast, the σdc below the melting/freezing point can be fitted by the Arrhenius equation separately, and therefore, the proton conduction is most likely governed by the proton hopping mechanism. The non-negligible influence of previously reported low water content on the physicochemical properties of [DEMA][OMs] is found, indicating the importance of reducing water content as much as possible for the study of "intrinsic" properties of protic ionic liquids.

10.
ChemSusChem ; 13(12): 3237-3242, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32250058

RESUMO

Li-rich oxides have garnered intense interest recently for their excellent capacity in rechargeable lithium-ion batteries (LIBs). However, poor cycling stability and capacity degradation during the cycling process impede their practical application. Herein, two ball-shaped cobalt-free oxide materials, Li1.1 Mg0.05 Ni0.3 Mn0.55 O2 and Li1.1 Zn0.05 Ni0.3 Mn0.55 O2 , which exhibit excellent cycling performance at a high current between 2 V and 4.8 V, are demonstrated. The two Li-rich materials are prepared from hydrothermally synthesized carbonated precursors. Both oxides exhibit high reversible capacities of 237 and 231 mAh g-1 at 20 mA g-1 , respectively, originating from the redox of Ni2+ /Ni4+ and O2- /(O2 )n- . Li1.1 Mg0.05 Ni0.3 Mn0.55 O2 presents excellent cycling stability after 200 cycles with 90 % capacity retention. Studies of the structural evolution upon electrochemical cycling implies the cathodes undergo a volume expansion, which results in continuous expanding, cracking, and crushing of the spherical particles, which further induces capacity fading in the cathodes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-29777936

RESUMO

Copper nanoclusters (Cu NCs) have attracted great research interest in recent years owing to its unique physical, electrical and optical properties. Macromolecules have been widely used as templates to synthesize fluorescent Cu NCs. In this study, a simple method for synthesis of albumin chicken egg capped porous copper nanoclusters (p-Cu NCs) was developed for the first time. The obtained p-Cu NCs exhibited intense emission and excitation peaks at 280 nm and 340 nm, respectively. Besides, the p-Cu NCs fluorescence probe could be quenched by Fe3+ ions in aqueous solutions. Therefore, the p-Cu NCs can be excellently candidated as fluorescent probe for the detection of Fe3+ ions. Under optimized conditions, this fluorescent probe exhibited a wide linear response concentration range (0.2 to 100 µM) to Fe3+ with a detection limit of 0.0234 µM. In addition, the fluorescent probe has been successfully used for the detection of Fe3+ in natural water samples with satisfactory result.


Assuntos
Cobre/química , Ferro/análise , Nanopartículas Metálicas/química , Água/química , Animais , Galinhas , Íons , Cinética , Nanopartículas Metálicas/ultraestrutura , Fenômenos Ópticos , Porosidade , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
12.
Luminescence ; 32(5): 806-811, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27995761

RESUMO

In this paper, a novel and ultrasensitive electrochemiluminescent sensor employing a solvothermal-synthesized CdS nanorod-modified pencil graphite electrode (CdS/PGE) for the determination of chlorogenic acid (CA) is fabricated. In the first step, the PGE surface is modified using CdS nanorods. In the next step, the developed electrode is used to detect CA using a electrochemiluminescent (ECL) technique, in which potassium persulfate (K2 S2 O8 ) served as a co-reactant. The possible ECL mechanism is investigated, and the influences of pH and cyclic voltammetric scanning rate on the signal response are studied. The ECL intensity decreases quantitatively in relation to the concentration of the target molecule. Under optimized conditions, the linear correlation between the quenched ECL intensity and the logarithm of CA concentration is observed in the range from 2 × 10-9 to 8 × 10-7  mol L-1 with a limit of detection of 1 × 10-9  mol L-1 . This proposed method is applied to the analysis of CA in honeysuckle flower, giving recoveries of 99-107%. The experimental results demonstrate that this ECL sensor shows good stability and reproducibility.


Assuntos
Ácido Clorogênico/análise , Eletroquímica/métodos , Lonicera/química , Medições Luminescentes/métodos , Nanotubos/química , Soluções Tampão , Compostos de Cádmio/química , Calibragem , Eletroquímica/instrumentação , Eletrodos , Etilenodiaminas/química , Flores/química , Grafite/química , Concentração de Íons de Hidrogênio , Medições Luminescentes/instrumentação , Nitratos/química , Compostos de Potássio/química , Reprodutibilidade dos Testes , Sulfatos/química , Sulfetos/química , Difração de Raios X
13.
Phys Chem Chem Phys ; 14(32): 11441-7, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22801556

RESUMO

The solvation effect of 1H-1,2,4-triazole towards imidazolium methanesulfonate was studied by blending imidazolium methanesulfonate and 1H-1,2,4-triazole. Upon addition of 1H-1,2,4-triazole, the melting point of imidazolium methanesulfonate was lowered to less than 100 °C while maintaining the high ionic conductivity for a wide composition range of the blend. The ionic conductivity of the blend can be adequately described by using the Vogel-Fulcher-Tamman equation. A vehicle mechanism is postulated to govern the proton conduction for the blend. The contribution of protons to the ionic conductivity was corroborated electrochemically. The blend exhibited electrochemical activities for H(2) oxidation and O(2) reduction at a Pt electrode, as well as a wide electrochemical window. Therefore, suitable blends can possibly serve as electrolytes for polymer electrolyte membrane fuel cells operating under non-humidifying conditions. The solvation effect studied herein suggests a promising approach to a wider application area of protic ionic liquids.


Assuntos
Imidazóis/química , Mesilatos/química , Triazóis/química , Ânions/química , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...