Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(23): 11288-11296, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37983011

RESUMO

Core-shell crystalline-amorphous nanocomposites, featuring nanograins surrounded by thick amorphous boundaries, are promising nanoarchitectures for achieving exceptional strength through cooperative strengthening effects. However, a comprehensive understanding of the influence of characteristic sizes, particularly the amorphous thickness, on codeformation strengthening is still lacking, limiting the attainment of the strength limit. Here, we employ molecular dynamics simulations to investigate Cu-CuTa crystalline-amorphous nanocomposites with varying grain sizes and amorphous thicknesses. Our findings demonstrate significant strengthening effects in nanocomposites, effectively suppressing the Hall-Petch breakdown observed in traditional amorphous-free nanograined Cu. Intriguingly, we observe a maximum strength followed by a strengthening-softening transition dependent on the amorphous thickness, as exemplified by a representative nanocomposite featuring a 12.5 nm grain size and a critical amorphous thickness of 4 nm. Inspired by observed shifts in atomistic mechanisms, we developed a theoretical model encompassing variations in grain size and amorphous thickness, providing valuable insights into the size-strength relationship for crystalline-amorphous nanocomposites.

2.
Adv Mater ; 31(46): e1905161, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31566274

RESUMO

Currently, n-type acceptors in high-performance all-polymer solar cells (all-PSCs) are dominated by imide-functionalized polymers, which typically show medium bandgap. Herein, a novel narrow-bandgap polymer, poly(5,6-dicyano-2,1,3-benzothiadiazole-alt-indacenodithiophene) (DCNBT-IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron-withdrawing cyano functionality enables DCNBT-IDT with n-type character and, more importantly, alleviates the steric hindrance associated with typical imide groups. Compared to the benchmark poly(naphthalene diimide-alt-bithiophene) (N2200), DCNBT-IDT shows a narrower bandgap (1.43 eV) with a much higher absorption coefficient (6.15 × 104 cm-1 ). Such properties are elusive for polymer acceptors to date, eradicating the drawbacks inherited in N2200 and other high-performance polymer acceptors. When blended with a wide-bandgap polymer donor, the DCNBT-IDT-based all-PSCs achieve a remarkable power conversion efficiency of 8.32% with a small energy loss of 0.53 eV and a photoresponse of up to 870 nm. Such efficiency greatly outperforms those of N2200 (6.13%) and the naphthalene diimide (NDI)-based analog NDI-IDT (2.19%). This work breaks the long-standing bottlenecks limiting materials innovation of n-type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all-PSCs.

3.
RSC Adv ; 9(64): 37287-37291, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542245

RESUMO

An isomerization method was utilized to yield a novel near-infrared nonfullerene acceptor DTA-IC-M. By simply changing the linking fashion between the anthracene and neighboring thiophenes, a remarkable redshift (∼170 nm) of absorption was observed from DTA-IC-S to its isomer DTA-IC-M which shows a maximum absorption peak over 800 nm with a narrow bandgap of 1.35 eV. Due to the enhanced photo-to-current response in the near-infrared region, an improved short-circuit current of 12.96 mA cm-2 was achieved for the DTA-IC-M based OSCs.

4.
J Mater Sci Mater Med ; 29(4): 37, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556818

RESUMO

Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111} < 112 > type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential Ecorr and lower corrosion current density Icorr compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.


Assuntos
Ligas de Cromo , Cobalto , Cobre , Lasers , Tungstênio , Materiais Biocompatíveis , Corrosão , Materiais Dentários , Teste de Materiais
5.
J Mech Behav Biomed Mater ; 81: 130-141, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510340

RESUMO

In the study, CoCrWCu alloys with differing Cu content (2, 3, 4 wt%) were prepared by selective laser melting using mixture powders consisting of CoCrW and Cu, aiming at investigating the effect of Cu on the microstructures, mechanical properties, corrosion behavior and cytotoxicity. The SEM observations indicated that the Cu content up to 3 wt% caused the Si-rich precipitates to segregate along grain boundaries and in the grains, and EBSD analysis suggested that the Cu addition decreased the recrystallization degree and increased the grain diameter and fraction of big grains. The tensile tests found that the increasing Cu content led to a decrease of mechanical properties compared with Cu-free CoCrW alloy. The electrochemical tests revealed that the addition of Cu shifted the corrosion potential toward nobler positive, but increased the corrosion current density. Also, a more protective passive film was formed when 2 wt% Cu content was added, but the higher Cu content up to 3 wt% was detrimental to the corrosion resistance. It was noted that there was no cytotoxicity for Cu-bearing CoCrW alloys to MG-63 cell and the cells could spread well on the surfaces of studied alloys. Meanwhile, the Cu-bearing CoCrW alloy exhibited an excellent antibacterial performance against E.coli when Cu content was up to 3 wt%. It is suggested that the feasible fabrication of Cu-bearing CoCrW alloy by SLM using mixed CoCrW and Cu powders is a promising candidate for use in antibacterial oral repair products. This current study also can aid in the further design of antibacterial Cu-containing CoCrW alloying powders.


Assuntos
Ligas/química , Ligas/toxicidade , Cobalto/química , Cobre/química , Lasers , Fenômenos Mecânicos , Tungstênio/química , Ligas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Eletroquímica , Escherichia coli/efeitos dos fármacos
6.
Mater Sci Eng C Mater Biol Appl ; 72: 631-640, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28024632

RESUMO

In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti2Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder.


Assuntos
Antibacterianos/química , Lasers , Titânio/química , Ligas , Animais , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Células da Medula Óssea/citologia , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Corrosão , Espectroscopia Dielétrica , Escherichia coli/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Staphylococcus aureus/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Titânio/metabolismo , Titânio/toxicidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...