Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(18): 4233-4240, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126526

RESUMO

Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...