Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(26): 264101, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996295

RESUMO

Proton tunneling is believed to be nonlocal in ice, but its range has been shown to be limited to only a few molecules. Here, we measured the thermal conductivity of ice under pressure up to 50 GPa and found it increases with pressure until 20 GPa but decreases at higher pressures. We attribute this nonmonotonic thermal conductivity to the collective tunneling of protons at high pressures, supported by large-scale quantum molecular dynamics simulations. The collective tunneling loops span several picoseconds in time and are as large as nanometers in space, which match the phonon periods and wavelengths, leading to strong phonon scattering at high pressures. Our results show direct evidence of global quantum motion existing in high-pressure ice and provide a new perspective to understanding the coupling between phonon propagation and atomic tunneling.

2.
Adv Mater ; 34(8): e2108400, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34859925

RESUMO

Lithium-metal batteries (LMBs) are considered as promising next-generation batteries due to their high energy density. However, commercial carbonate electrolytes cannot be used in LMBs due to their poor compatibility with the lithium-metal anode and detrimental hydrogen fluoride (HF) generation by lithium hexafluorophosphate decomposition. By introducing lithium nitrate additive and a small amount of tetramethylurea as a multifunctional cosolvent to a commercial carbonate electrolyte, NO3 - , which is usually insoluble, can be introduced into the solvation structure of Li+ to form a conductive and stable solid electrolyte interface. At the same time, HF generation is suppressed by manipulating the solvation structure and a scavenging effect. As a result, the Coulombic efficiency (CE) of Li||Cu half cells using the designed carbonate electrolyte can reach 98.19% at room temperature and 96.14% at low temperature (-15 °C), and Li||LiFePO4 cells deliver a high capacity retention of 94.9% with a high CE of 99.6% after 550 cycles. This work provides a simple and effective way to extend the use of commercial carbonate electrolytes for next-generation battery systems.

3.
J Chem Phys ; 153(19): 194105, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33218245

RESUMO

Molecular dynamics (MD) is a powerful (and the most viable) tool to compute the thermal conductivities of solid disordered materials. However, conventional classical MD fails to describe the nuclear quantum effects (NQEs), so it may give inaccurate results for light materials at low temperatures. While the importance of NQE has been widely acknowledged, yet we do not have a fully reliable method to account for NQE in the MD thermal conductivity calculations. In this work, we will investigate and analyze the performances of a number of path-integral-based quantum MD methods, using ordered ice as a test case. To establish the validity of these methods, we will compare the MD results with the lattice dynamics results, in both classical and quantum limits. Through such a comparison, we will show that methods such as ring polymer MD stand as a good approach for a complex solid with short phonon lifetimes but could be problematic when describing long-living acoustic phonons. In addition, we will show that the rigid water model, which is the state-of-the-art model in the studies of ice/water systems, fails to capture most of the NQEs in ice thermal conductivity. Neglecting librational and translational NQEs leads to essential errors, which clearly demonstrates the importance of a true quantum simulation method that treats all modes at a consistent quantum level.

4.
Nanomaterials (Basel) ; 9(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540315

RESUMO

Two-dimensional (2D) tungsten disulfide (WS2) has inspired great efforts in optoelectronics, such as in solar cells, light-emitting diodes, and photodetectors. However, chemical vapor deposition (CVD) grown 2D WS2 domains with the coexistence of a discontinuous single layer and multilayers are still not suitable for the fabrication of photodetectors on a large scale. An emerging field in the integration of organic materials with 2D materials offers the advantages of molecular diversity and flexibility to provide an exciting aspect on high-performance device applications. Herein, we fabricated a photodetector based on a 2D-WS2/organic semiconductor materials (mixture of the (Poly-(N, N'-bis-4-butylphenyl-N, N'-bisphenyl) benzidine and Phenyl-C61-butyric acid methyl ester (Poly-TPD/PCBM)) heterojunction. The application of Poly-TPD/PCBM organic blend film enhanced light absorption, electrically connected the isolated WS2 domains, and promoted the separation of electron-hole pairs. The generated exciton could sufficiently diffuse to the interface of the WS2 and the organic blend layers for efficient charge separation, where Poly-TPD was favorable for hole carrier transport and PCBM for electron transport to their respective electrodes. We show that the photodetector exhibited high responsivity, detectivity, and an on/off ratio of 0.1 A/W, 1.1 × 1011 Jones, and 100, respectively. In addition, the photodetector showed a broad spectral response from 500 nm to 750 nm, with a peak external quantum efficiency (EQE) of 8%. Our work offers a facile solution-coating process combined with a CVD technique to prepare an inorganic/organic heterojunction photodetector with high performance on silicon substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...