Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0251023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38047702

RESUMO

IMPORTANCE: Gene mutations cannot explain all drug resistance of Mycobacterium tuberculosis, and the overexpression of efflux pump genes is considered another important cause of drug resistance. A total of 46 clinical isolates were included in this study to analyze the overexpression of efflux pump genes in different resistant types of strains. The results showed that overexpression of efflux pump genes did not occur in sensitive strains. There was no significant trend in the overexpression of efflux pump genes before and after one-half of MIC drug induction. By adding the efflux pump inhibitor verapamil, we can observe the decrease of MIC of some drug-resistant strains. At the same time, this study ensured the reliability of calculating the relative expression level of efflux pump genes by screening reference genes and using two reference genes for the normalization of quantitative PCR. Therefore, this study confirms that the overexpression of efflux pump genes plays an important role in the drug resistance of clinical isolates of Mycobacterium tuberculosis.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Antituberculosos/uso terapêutico , Reprodutibilidade dos Testes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Resistência a Medicamentos
2.
Comput Biol Med ; 168: 107806, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081116

RESUMO

BACKGROUND: Recently, brain-computer interfaces (BCIs) have attracted worldwide attention for their great potential in clinical and real-life applications. To implement a complete BCI system, one must set up several links to translate the brain intent into computer commands. However, there is not an open-source software platform that can cover all links of the BCI chain. METHOD: This study developed a one-stop open-source BCI software, namely MetaBCI, to facilitate the construction of a BCI system. MetaBCI is written in Python, and has the functions of stimulus presentation (Brainstim), data loading and processing (Brainda), and online information flow (Brainflow). This paper introduces the detailed information of MetaBCI and presents four typical application cases. RESULTS: The results showed that MetaBCI was an extensible and feature-rich software platform for BCI research and application, which could effectively encode, decode, and feedback brain activities. CONCLUSIONS: MetaBCI can greatly lower the BCI's technical threshold for BCI beginners and can save time and cost to build up a practical BCI system. The source code is available at https://github.com/TBC-TJU/MetaBCI, expecting new contributions from the BCI community.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Encéfalo , Software , Mapeamento Encefálico
3.
J Neural Eng ; 20(6)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948768

RESUMO

Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) is a promising technology that can achieve high information transfer rate (ITR) with supervised algorithms such as ensemble task-related component analysis (eTRCA) and task-discriminant component analysis (TDCA). However, training individual models requires a tedious and time-consuming calibration process, which hinders the real-life use of SSVEP-BCIs. A recent data augmentation method, called source aliasing matrix estimation (SAME), can generate new EEG samples from a few calibration trials. But SAME does not exploit the information across stimuli as well as only reduces the number of calibration trials per command, so it still has some limitations.Approach. This study proposes an extended version of SAME, called multi-stimulus SAME (msSAME), which exploits the similarity of the aliasing matrix across frequencies to enhance the performance of SSVEP-BCI with insufficient calibration trials. We also propose a semi-supervised approach based on msSAME that can further reduce the number of SSVEP frequencies needed for calibration. We evaluate our method on two public datasets, Benchmark and BETA, and an online experiment.Main results. The results show that msSAME outperforms SAME for both eTRCA and TDCA on the public datasets. Moreover, the semi-supervised msSAME-based method achieves comparable performance to the fully calibrated methods and outperforms the conventional free-calibrated methods. Remarkably, our method only needs 24 s to calibrate 40 targets in the online experiment and achieves an average ITR of 213.8 bits min-1with a peak of 242.6 bits min-1.Significance. This study significantly reduces the calibration effort for individual SSVEP-BCIs, which is beneficial for developing practical plug-and-play SSVEP-BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Estimulação Luminosa/métodos , Calibragem , Eletroencefalografia/métodos , Algoritmos
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 683-691, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37666758

RESUMO

Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.


Assuntos
Interfaces Cérebro-Computador , Humanos , Potenciais Evocados Visuais , Algoritmos , Análise Discriminante , Eletroencefalografia
5.
IEEE Trans Biomed Eng ; 70(6): 1775-1785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015587

RESUMO

OBJECTIVE: Currently, ensemble task-related component analysis (eTRCA) and task discriminative component analysis (TDCA) are the state-of-the-art algorithms for steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). However, training the BCIs requires multiple calibration trials. With insufficient calibration data, the accuracy of the BCI will degrade, or even become invalid with only one calibration trial. However, collecting a large amount of electroencephalography (EEG) data for calibration is a time-consuming and laborious process, which hinders the practical use of eTRCA and TDCA. METHODS: This study proposed a novel method, namely Source Aliasing Matrix Estimation (SAME), to augment the calibration data for SSVEP-BCIs. SAME could generate artificial EEG trials with the featured SSVEPs. Its effectiveness was evaluated using two public datasets (i.e., Benchmark, BETA). RESULTS: When combined with SAME, both eTRCA and TDCA had significantly improved performance with a limited number of calibration data. Specifically, SAME increased the average accuracy of eTRCA and TDCA by about 12% and 3%, respectively, with as few as two calibration trials. Notably, SAME enabled eTRCA and TDCA to work well with a single calibration trial, achieving an average accuracy >90% for the Benchmark dataset and >70% for the BETA dataset with 1-second EEG. CONCLUSION: SAME is an effective method for SSVEP-BCIs to augment the calibration data, thereby significantly enhancing the performance of eTRCA and TDCA. SIGNIFICANCE: We propose a new data-augmentation method that is compatible with the state-of-the-art algorithms of SSVEP-based BCIs. It can significantly reduce the efforts required to calibrate SSVEP-BCIs, which is promising for the development of practical BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Eletroencefalografia/métodos , Algoritmos , Calibragem , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...