Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427437

RESUMO

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Assuntos
Antígeno B7-H1 , Células Supressoras Mieloides , Animais , Antígeno B7-H1/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Metástase Neoplásica , Linhagem Celular Tumoral , Feminino , Modelos Animais de Doenças , Quimiocina CXCL10/metabolismo
2.
Sci Transl Med ; 13(582)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627484

RESUMO

Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.


Assuntos
Células Precursoras Eritroides , Neoplasias , Imunidade Adaptativa , Animais , Humanos , Imunoterapia , Camundongos , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...