Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
World J Stem Cells ; 16(4): 389-409, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38690514

RESUMO

BACKGROUND: Osteoporosis (OP) has become a major public health problem worldwide. Most OP treatments are based on the inhibition of bone resorption, and it is necessary to identify additional treatments aimed at enhancing osteogenesis. In the bone marrow (BM) niche, bone mesenchymal stem cells (BMSCs) are exposed to a hypoxic environment. Recently, a few studies have demonstrated that hypoxia-inducible factor 2alpha (HIF-2α) is involved in BMSC osteogenic differentiation, but the molecular mechanism involved has not been determined. AIM: To investigate the effect of HIF-2α on the osteogenic and adipogenic differentiation of BMSCs and the hematopoietic function of hematopoietic stem cells (HSCs) in the BM niche on the progression of OP. METHODS: Mice with BMSC-specific HIF-2α knockout (Prx1-Cre;Hif-2αfl/fl mice) were used for in vivo experiments. Bone quantification was performed on mice of two genotypes with three interventions: Bilateral ovariectomy, semilethal irradiation, and dexamethasone treatment. Moreover, the hematopoietic function of HSCs in the BM niche was compared between the two mouse genotypes. In vitro, the HIF-2α agonist roxadustat and the HIF-2α inhibitor PT2399 were used to investigate the function of HIF-2α in BMSC osteogenic and adipogenic differentiation. Finally, we investigated the effect of HIF-2α on BMSCs via treatment with the mechanistic target of rapamycin (mTOR) agonist MHY1485 and the mTOR inhibitor rapamycin. RESULTS: The quantitative index determined by microcomputed tomography indicated that the femoral bone density of Prx1-Cre;Hif-2αfl/fl mice was lower than that of Hif-2αfl/fl mice under the three intervention conditions. In vitro, Hif-2αfl/fl mouse BMSCs were cultured and treated with the HIF-2α agonist roxadustat, and after 7 d of BMSC adipogenic differentiation, the oil red O staining intensity and mRNA expression levels of adipogenesis-related genes in BMSCs treated with roxadustat were decreased; in addition, after 14 d of osteogenic differentiation, BMSCs treated with roxadustat exhibited increased expression of osteogenesis-related genes. The opposite effects were shown for mouse BMSCs treated with the HIF-2α inhibitor PT2399. The mTOR inhibitor rapamycin was used to confirm that HIF-2α regulated BMSC osteogenic and adipogenic differentiation by inhibiting the mTOR pathway. Consequently, there was no significant difference in the hematopoietic function of HSCs between Prx1-Cre;Hif-2αfl/fl and Hif-2αfl/fl mice. CONCLUSION: Our study showed that inhibition of HIF-2α decreases bone mass by inhibiting the osteogenic differentiation and increasing the adipogenic differentiation of BMSCs through inhibition of mTOR signaling in the BM niche.

2.
J Endourol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753720

RESUMO

Background: Endoscopy image enhancement technology provides doctors with clearer and more detailed images for observation and diagnosis, allowing doctors to assess lesions more accurately. Unlike most other endoscopy images, cystoscopy images face more complex and diverse image degradation because of their underwater imaging characteristics. Among the various causes of image degradation, the blood haze resulting from bladder mucosal bleeding make the background blurry and unclear, severely affecting diagnostic efficiency, even leading to misjudgment. Materials and Methods: We propose a deep learning-based approach to mitigate the impact of blood haze on cystoscopy images. The approach consists of two parts as follows: a blood haze removal network and a contrast enhancement algorithm. First, we adopt Feature Fusion Attention Network (FFA-Net) and transfer learning in the field of deep learning to remove blood haze from cystoscopy images and introduce perceptual loss to constrain the network for better visual results. Second, we enhance the image contrast by remapping the gray scale of the blood haze-free image and performing weighted fusion of the processed image and the original image. Results: In the blood haze removal stage, the algorithm proposed in this article achieves an average peak signal-to-noise ratio of 29.44 decibels, which is 15% higher than state-of-the-art traditional methods. The average structural similarity and perceptual image patch similarity reach 0.9269 and 0.1146, respectively, both superior to state-of-the-art traditional methods. Besides, our method is the best in keeping color balance after removing the blood haze. In the image enhancement stage, our algorithm enhances the contrast of vessels and tissues while preserving the original colors, expanding the dynamic range of the image. Conclusion: The deep learning-based cystoscopy image enhancement method is significantly better than other traditional methods in both qualitative and quantitative evaluation. The application of artificial intelligence will provide clearer, higher contrast cystoscopy images for medical diagnosis.

3.
Can J Hosp Pharm ; 77(2): e3545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720916

RESUMO

Background: Poor discharge planning can lead to increases in adverse drug events, hospital readmissions, and costs. Prior research has identified the pharmacist as an integral part of the discharge process. Objectives: To gain patients' perspectives on the discharge process and what they would like pharmacists to do to ensure a successful discharge. Methods: Twenty patients discharged from tertiary care hospitals were interviewed after discharge. A phenomenological approach was used to conduct this qualitative study. Results: Five main themes were identified from the patient interviews: interactions with health care professionals, importance of discharge documentation, importance of seamless care, comprehensive and patient-specific medication counselling, and patients' preference for involvement and communication at all stages of hospital stay. Conclusions: Although participants generally reported positive interactions with health care providers at discharge, several areas for improvement were identified, particularly in terms of communication, discharge documentation, and continuity of care. A list of recommendations aligning with patient preferences is provided for clinicians.


Contexte: Une mauvaise planification du congé hospitalier peut entraîner une augmentation des événements indésirables liés aux médicaments, des réadmissions et des coûts. Des recherches antérieures ont reconnu le pharmacien comme faisant partie intégrante du processus associé au congé de l'hôpital. Objectifs: Recueillir le point de vue des patients sur le processus relatif au congé et sur ce qu'ils aimeraient que les pharmaciens fassent pour assurer la réussite de celui-ci. Méthodologie: Vingt patients d'hôpitaux de soins tertiaires ont été interrogés après leur congé. Cette étude qualitative a été menée en adoptant une approche phénoménologique. Résultats: Cinq thèmes principaux ont émergé à partir des entretiens avec les patients: les interactions avec les professionnels de la santé, l'importance de la documentation au moment du congé, l'importance de soins continus, des conseils complets et spécifiques au patient en matière de médication, et la préférence des patients pour l'implication et la communication à toutes les étapes de leur séjour à l'hôpital. Conclusions: Bien que les participants aient généralement signalé des interactions positives avec les prestataires de soins de santé au moment de leur congé, plusieurs domaines d'amélioration ont été dépistés, notamment sur les plans de la communication, de la documentation au moment du congé et de la continuité des soins. Une liste de recommandations alignées sur les préférences des patients est fournie aux cliniciens.

4.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621872

RESUMO

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Assuntos
Melhoramento Vegetal , Espectrometria de Massas em Tandem , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Biomarcadores/metabolismo
5.
Biophys J ; 123(4): 478-488, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38234090

RESUMO

Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Benzeno , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Antivirais/farmacologia
6.
Small ; 20(7): e2305980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800615

RESUMO

Unclear reaction mechanisms and unsatisfactory power performance hinder the further development of advanced lithium/fluorinated carbon (Li/CFx ) batteries. Herein, the mechano-electrochemical coupling behavior of a CFx cathode is investigated by in situ monitoring strain/stress using digital image correlation (DIC) techniques, electrochemical methods, and theoretical equations. The DIC monitoring results present the distribution and dynamic evolution of the plane strain and indicate strong dependence toward the material structure and discharge rate. The average plane principal strain of fully discharged 2D fluorinated graphene nanosheets (FGNSs) at 0.5 C is 0.50%, which is only 38.5% that of conventional bulk-structure CFx . Furthermore, the superior structural stability of the FGNSs is demonstrated by the microstructure and component characterization before and after discharge. The plane stress evolution is calculated based on theoretical equations, and the contributions of electrochemical and mechanical factors are examined and discussed. Subsequently, a structure-dependent three-region discharge mechanism for CFx electrodes is proposed from a mechanical perspective. Additionally, the surface deformation of Li/FGNSs pouch cells formed during the discharge process is monitored using in situ DIC. This study reveals the discharge mechanism of Li/CFx batteries and facilitates the design of advanced CFx materials.

7.
Cell Death Dis ; 14(11): 760, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993451

RESUMO

Lipid metabolism is the key to ferroptosis susceptibility. However, little is known about the underlying mechanisms in osteosarcoma cells. Functional restriction of bromodomain-containing protein 4 (BRD4) reduced the susceptibility to erastin-induced ferroptosis of osteosarcoma cells both in vitro and in vivo. Mechanically, BRD4 controls the splicing efficiency of the RNA precursor (pre-mACSL3) of ACSL3 (ACSL3) by recruiting serinerich/threonine protein kinase 2 (SRPK2) to assemble the splicing catalytic platform. Moreover, the AMP-binding domain of ACSL3 significantly influences arachidonic acid synthesis and thus determines the susceptibility to erastin-induced ferroptosis. Overall, we found a BRD4-mediated pre-mACSL3 splicing influences erastin-induced ferroptosis by affecting arachidonic acid synthesis in osteosarcoma cells. Data in this study fills some of the gap in understanding the post-transcriptional regulatory mechanisms of ACSL3 and provides new insights into the mechanisms of lipid metabolism regulation and its effect on susceptibility to ferroptosis in osteosarcoma cells.


Assuntos
Ferroptose , Osteossarcoma , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Ferroptose/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Ácido Araquidônico/farmacologia , Proteínas de Ligação a RNA , Osteossarcoma/genética , Fatores de Processamento de Serina-Arginina , Proteínas de Ciclo Celular/metabolismo
8.
PLoS One ; 18(9): e0288982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756330

RESUMO

Phlebopus portentosus (Berk. and Broome) Boedijn is an attractive edible mushroom and is considered the only bolete for which artificial cultivation in vitro has been achieved. Gene expression analysis has become widely used in research on edible fungi and is important for elucidating the functions of genes involved in complex biological processes. Selecting appropriate reference genes is crucial to ensuring reliable RT‒qPCR gene expression analysis results. In our study, a total of 12 candidate control genes were selected from 25 traditional housekeeping genes based on their expression stability in 9 transcriptomes of 3 developmental stages. These genes were further evaluated using geNorm, NormFinder, and RefFinder under different conditions and developmental stages. The results revealed that MSF1 domain-containing protein (MSF1), synaptobrevin (SYB), mitogen-activated protein kinase genes (MAPK), TATA-binding protein 1 (TBP1), and SPRY domain protein (SPRY) were the most stable reference genes in all sample treatments, while elongation factor 1-alpha (EF1), actin and ubiquitin-conjugating enzyme (UBCE) were the most unstably expressed. The gene SYB was selected based on the transcriptome results and was identified as a novel reference gene in P. portentosus. This is the first detailed study on the identification of reference genes in this fungus and may provide new insights into selecting genes and quantifying gene expression.


Assuntos
Agaricales , Basidiomycota , Genes Essenciais , Proteínas R-SNARE , Transcriptoma
9.
Front Nutr ; 10: 1168025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457983

RESUMO

Introduction: Low temperature is the most common method used to maintain the freshness of Phlebopus portentosus during long-distance transportation. However, there is no information regarding the nutritional changes that occur in P. portentosus preserved postharvest in low temperature. Methods: In this study, the changes in flavor quality and bioactive components in fruiting bodies stored at 4 °C for different storage periods were determined through LC/MS and GC/MS analyses. Sampling was performed at 0, 3, 5, 7, and 13 days storage. Results and Discussion: Based on the results, the metabolites present in caps and stipes were different at the same period and significantly different after 7 days of storage. A total of 583 and 500 different metabolites were detected in caps and stipes, respectively, and were mainly lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds and others. Except for prenol lipids and nucleotides, the expression levels of most metabolites increased with longer storage time. In addition, geosmin was identified as the major contributor to earthy-musty odors, and the level of geosmin was increased when the storage time was short. Conclusion: The variations in these metabolites might cause changes in flavor quality and bioactive components in P. portentosus. Variations in these metabolites were thoroughly analyzed, and the results revealed how storage processes affect the postharvest quality of P. portentosus for the first time.

10.
ACS Omega ; 8(9): 8885-8893, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910976

RESUMO

Traditional methods for synthesizing complex oligosaccharides currently developed are not efficient, requiring a new glycosylation methodology. Herein, using phosphotungstic acid (PTA) as a catalyst has demonstrated to be a simple possibility for carbohydrate synthesis. The methodology is engineered into a PTA-catalyzed thioglycoside preparation under microwave conditions and de-O-acetylation of carbohydrates. These easier operations and convenient protocols display a wide substrate scope. Moreover, both methods can be developed into a one-pot reaction for the efficient synthesis of carbohydrate analogues.

11.
Prep Biochem Biotechnol ; 53(9): 1081-1091, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36756987

RESUMO

Chinese hamster ovary (CHO) cells are commonly used as "bio-machines" to pro-duce monoclonal antibodies (mAb) because of their ability to produce very complex proteins. In this study, we evaluated the effects of pine needle water extract (PNWE), pine needle ethanol extract (PNEE), and pine needle polysaccharide extract (PNPE) on the CHO cell growth, mAb production and quality using a Fed-batch culture process. PNPE maintained high VCD and viability, and the titer increase was correlated with its concentration. Three extracts effectively reduced the acidic charge variant and modulated mAb glycosylation. PNPE had the most profound effect, with G0F decreasing by 8.7% and G1Fa increasing by 6.7%. The change in the glycoform was also closely related to the PNPE concentration. This study demonstrated that PNPE could facilitate CHO cell growth, increase the mAb production, decrease acidic charge variants, and regulate mAb glycoforms. To identify the components responsible for the above changes, the sugar and flavonoid contents in the extracts were determined, and the chemical compounds were identified by LC-MS, resulting in 38 compounds identified from PNPE. Rich in sugars and flavonoids in these three extracts may be related to increased CHO cell growth and productivity, and changes in glycoforms.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Cricetinae , Animais , Cricetulus , Células CHO , Técnicas de Cultura Celular por Lotes/métodos
13.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080059

RESUMO

Over the past decade, iron (Fe)-based hollow nanoplatforms (Fe-HNPs) have attracted increasing attention for cancer theranostics, due to their high safety and superior diagnostic/therapeutic features. Specifically, Fe-involved components can serve as magnetic resonance imaging (MRI) contrast agents (CAs) and Fenton-like/photothermal/magnetic hyperthermia (MTH) therapy agents, while the cavities are able to load various small molecules (e.g., fluorescent dyes, chemotherapeutic drugs, photosensitizers, etc.) to allow multifunctional all-in-one theranostics. In this review, the recent advances of Fe-HNPs for cancer imaging and treatment are summarized. Firstly, the use of Fe-HNPs in single T1-weighted MRI and T2-weighted MRI, T1-/T2-weighted dual-modal MRI as well as other dual-modal imaging modalities are presented. Secondly, diverse Fe-HNPs, including hollow iron oxide (IO) nanoparticles (NPs), hollow matrix-supported IO NPs, hollow Fe-complex NPs and hollow Prussian blue (PB) NPs are described for MRI-guided therapies. Lastly, the potential clinical obstacles and implications for future research of these hollow Fe-based nanotheranostics are discussed.

14.
Immunohorizons ; 6(6): 344-355, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697478

RESUMO

Epitope mapping of the interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Abs is challenging because of complexity in protein three-dimensional structures. Protein structure fingerprint technology was applied for epitope mapping of 44 SARS-CoV-2 Abs with three-dimensional structure complexes. The results defined how the epitopes were distributed on SARS-CoV-2 and how the patterns of six CDRs from Abs participated in neutralization. Also, the residue-residue recognition revealed that certain residues had higher frequencies on the interfaces between SARS-CoV-2 and Abs, and the activity correlated with the physicochemical properties of the residues at the interface. Thus, epitope mapping provides significant lead information for development of epitope-based designs for Abs, vaccines, and diagnostic reagents. This is a bioinformatics project of structural data analysis; no animals or cells were used.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Mapeamento de Epitopos , Epitopos , Humanos , Glicoproteínas de Membrana , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
15.
Biology (Basel) ; 11(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35741343

RESUMO

Glycosylation occurring at either lipids, proteins, or sugars plays important roles in many biological systems. In nature, enzymatic glycosylation is the formation of a glycosidic bond between the anomeric carbon of the donor sugar and the functional group of the sugar acceptor. This study found novel glycoside anomers without an anomeric carbon linkage of the sugar donor. A glycoside hydrolase (GH) enzyme, amylosucrase from Deinococcus geothermalis (DgAS), was evaluated to glycosylate ganoderic acid F (GAF), a lanostane triterpenoid from medicinal fungus Ganoderma lucidum, at different pH levels. The results showed that GAF was glycosylated by DgAS at acidic conditions pH 5 and pH 6, whereas the activity dramatically decreased to be undetectable at pH 7 or pH 8. The biotransformation product was purified by preparative high-performance liquid chromatography and identified as unusual α-glucosyl-(2→26)-GAF and ß-glucosyl-(2→26)-GAF anomers by mass and nucleic magnetic resonance (NMR) spectroscopy. We further used DgAS to catalyze another six triterpenoids. Under the acidic conditions, two of six compounds, ganoderic acid A (GAA) and ganoderic acid G (GAG), could be converted to α-glucosyl-(2→26)-GAA and ß-glucosyl-(2→26)-GAA anomers and α-glucosyl-(2→26)-GAG and ß-glucosyl-(2→26)-GAG anomers, respectively. The glycosylation of triterpenoid aglycones was first confirmed to be converted via a GH enzyme, DgAS. The novel enzymatic glycosylation-formed glycoside anomers opens a new bioreaction in the pharmaceutical industry and in the biotechnology sector.

16.
Front Mol Biosci ; 9: 871499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517857

RESUMO

Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.

17.
Pharm Biol ; 60(1): 1-8, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34860644

RESUMO

CONTEXT: As an inhibitor cytochrome P450 family 2 subfamily C polypeptide 8 (CYP2C8), quercetin is a naturally occurring flavonoid with its glycosides consumed at least 100 mg per day in food. However, it is still unknown whether quercetin and selexipag interact. OBJECTIVE: The study investigated the effect of quercetin on the pharmacokinetics of selexipag and ACT-333679 in beagles. MATERIALS AND METHODS: The ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate the pharmacokinetics of orally administered selexipag (2 mg/kg) with and without quercetin (2 mg/kg/day for 7 days) pre-treatment in beagles. The effect of quercetin on the pharmacokinetics of selexipag and its potential mechanism was studied through the pharmacokinetic parameters. RESULTS: The assay method was validated for selexipag and ACT-333679, and the lower limit of quantification for both was 1 ng/mL. The recovery and the matrix effect of selexipag were 84.5-91.58% and 94.98-99.67%, while for ACT-333679 were 81.21-93.90% and 93.17-99.23%. The UPLC-MS/MS method was sensitive, accurate and precise, and had been applied to the herb-drug interaction study of quercetin with selexipag and ACT-333679. Treatment with quercetin led to an increased in Cmax and AUC0-t of selexipag by about 43.08% and 26.92%, respectively. While the ACT-333679 was about 11.11% and 18.87%, respectively. DISCUSSION AND CONCLUSION: The study indicated that quercetin could inhibit the metabolism of selexipag and ACT-333679 when co-administration. Therefore, the clinical dose of selexipag should be used with caution when co-administered with foods high in quercetin.


Assuntos
Acetamidas/farmacocinética , Acetatos/farmacocinética , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Pirazinas/farmacocinética , Quercetina/farmacologia , Animais , Anti-Hipertensivos/farmacocinética , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Cães , Feminino , Interações Ervas-Drogas , Masculino , Espectrometria de Massas em Tandem
18.
World J Diabetes ; 12(10): 1789-1808, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34754379

RESUMO

BACKGROUND: Previous studies have shown that diabetes mellitus is a common comorbidity of coronavirus disease 2019 (COVID-19), but the effects of diabetes or anti-diabetic medication on the mortality of COVID-19 have not been well described. AIM: To investigate the outcome of different statuses (with or without comorbidity) and anti-diabetic medication use before admission of diabetic after COVID-19. METHODS: In this multicenter and retrospective study, we enrolled 1422 consecutive hospitalized patients from January 21, 2020, to March 25, 2020, at six hospitals in Hubei Province, China. The primary endpoint was in-hospital mortality. Epidemiological material, demographic information, clinical data, laboratory parameters, radiographic characteristics, treatment and outcome were extracted from electronic medical records using a standardized data collection form. Most of the laboratory data except fasting plasma glucose (FPG) were obtained in first hospitalization, and FPG was collected in the next day morning. Major clinical symptoms, vital signs at admission and comorbidities were collected. The treatment data included not only COVID-19 but also diabetes mellitus. The duration from the onset of symptoms to admission, illness severity, intensive care unit (ICU) admission, and length of hospital stay were also recorded. All data were checked by a team of sophisticated physicians. RESULTS: Patients with diabetes were 10 years older than non-diabetic patients [(39 - 64) vs (56 - 70), P < 0.001] and had a higher prevalence of comorbidities such as hypertension (55.5% vs 21.4%, P < 0.001), coronary heart disease (CHD) (9.9% vs 3.5%, P < 0.001), cerebrovascular disease (CVD) (3% vs 2.2%, P < 0.001), and chronic kidney disease (CKD) (4.7% vs 1.5%, P = 0.007). Mortality (13.6% vs 7.2%, P = 0.003) was more prevalent among the diabetes group. Further analysis revealed that patients with diabetes who took acarbose had a lower mortality rate (2.2% vs 26.1, P < 0.01). Multivariable Cox regression showed that male sex [hazard ratio (HR) 2.59 (1.68 - 3.99), P < 0.001], hypertension [HR 1.75 (1.18 - 2.60), P = 0.006), CKD [HR 4.55 (2.52-8.20), P < 0.001], CVD [HR 2.35 (1.27 - 4.33), P = 0.006], and age were risk factors for the COVID-19 mortality. Higher HRs were noted in those aged ≥ 65 (HR 11.8 [4.6 - 30.2], P < 0.001) vs 50-64 years (HR 5.86 [2.27 - 15.12], P < 0.001). The survival curve revealed that, compared with the diabetes only group, the mortality was increased in the diabetes with comorbidities group (P = 0.009) but was not significantly different from the non-comorbidity group (P = 0.59). CONCLUSION: Patients with diabetes had worse outcomes when suffering from COVID-19; however, the outcome was not associated with diabetes itself but with comorbidities. Furthermore, acarbose could reduce the mortality in diabetic.

19.
Front Microbiol ; 12: 732458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659161

RESUMO

Phlebopus portentosus (Berk. and Broome) Boedijin, a widely consumed mushroom in China and Thailand, is the first species in the order Boletaceae to have been industrially cultivated on a large scale. However, to date, the lignocellulose degradation system and molecular basis of fruiting body development in P. portentosus have remained cryptic. In the present study, genome and transcriptome sequencing of P. portentosus was performed during the mycelium (S), primordium (P), and fruiting body (F) stages. A genome of 32.74 Mb with a 48.92% GC content across 62 scaffolds was obtained. A total of 9,464 putative genes were predicted from the genome, of which the number of genes related to plant cell wall-degrading enzymes was much lower than that of some saprophytic mushrooms with specific ectomycorrhizal niches. Principal component analysis of RNA-Seq data revealed that the gene expression profiles at all three stages were different. The low expression of plant cell wall-degrading genes also confirmed the limited ability to degrade lignocellulose. The expression profiles also revealed that some conserved and specific pathways were enriched in the different developmental stages of P. portentosus. Starch and sucrose metabolic pathways were enriched in the mycelium stage, while DNA replication, the proteasome and MAPK signaling pathways may be associated with maturation. These results provide a new perspective for understanding the key pathways and hub genes involved in P. portentosus development.

20.
Front Neurol ; 12: 633390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295296

RESUMO

Background: Diffuse lower-grade gliomas (LGGs) are infiltrative and heterogeneous neoplasms. Gene signature including multiple protein-coding genes (PCGs) is widely used as a tumor marker. This study aimed to construct a multi-PCG signature to predict survival for LGG patients. Methods: LGG data including PCG expression profiles and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Survival analysis, receiver operating characteristic (ROC) analysis, and random survival forest algorithm (RSFVH) were used to identify the prognostic PCG signature. Results: From the training (n = 524) and test (n = 431) datasets, a five-PCG signature which can classify LGG patients into low- or high-risk group with a significantly different overall survival (log rank P < 0.001) was screened out and validated. In terms of prognosis predictive performance, the five-PCG signature is stronger than other clinical variables and IDH mutation status. Moreover, the five-PCG signature could further divide radiotherapy patients into two different risk groups. GO and KEGG analysis found that PCGs in the prognostic five-PCG signature were mainly enriched in cell cycle, apoptosis, DNA replication pathways. Conclusions: The new five-PCG signature is a reliable prognostic marker for LGG patients and has a good prospect in clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...