Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4233, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244485

RESUMO

The Jahn-Teller effect is an essential mechanism of spontaneous symmetry breaking in molecular and solid state systems, and has far-reaching consequences in many fields. Up to now, to directly image the onset of Jahn-Teller symmetry breaking remains unreached. Here we employ ultrafast ion-coincidence Coulomb explosion imaging with sub-10 fs resolution and unambiguously image the ultrafast dynamics of Jahn-Teller deformations of [Formula: see text] cation in symmetry space. It is unraveled that the Jahn-Teller deformation from C3v to C2v geometries takes a characteristic time of 20 ± 7 fs for this system. Classical and quantum molecular dynamics simulations agree well with the measurement, and reveal dynamics for the build-up of the C2v structure involving complex revival process of multiple vibrational pathways of the [Formula: see text] cation.

2.
Environ Sci Pollut Res Int ; 27(32): 40219-40228, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661974

RESUMO

A combined coagulation and γ-Al2O3 catalytic ozonation process was used to treat semi-aerobic aged refuse biofilter (SAARB) effluent from treating mature landfill leachate. First, the coagulant providing the best pretreatment performance was selected. Then, the coagulated SAARB leachate was further treated in an optimized γ-Al2O3-catalyzed ozonation process. Characteristics of the γ-Al2O3-catalyzed ozonation process were determined, and a reaction mechanism was proposed. FeCl3 provided the best treatment efficiency (chemical oxygen demand (COD) removal of 65.8%, absorbance at 254 nm (UV254) removal of 68.55%, and color number (CN) removal of 79.4%). Under optimized O3 dosage (18.92 mg/min) and γ-Al2O3 dosage (10 g/L), efficiencies of removing COD, UV254, and CN were 54.3%, 82.9%, and 95.9%, respectively, at 30 min. In addition, spectral analysis indicated that fulvic-like substances in ultraviolet and visible regions were effectively degraded in the γ-Al2O3-O3 process and some smaller organic products were produced. Characterization of γ-Al2O3 showed that γ-Al2O3 was relative stable; its morphology and constituent elements did not change much after reaction. In addition, ozonation capacity was enhanced by heterogeneous catalytic effects of γ-Al2O3. The combined coagulation and γ-Al2O3 catalytic ozonation process was proven to be an efficient treatment method for removing bio-refractory organic matter contained in SAARB leachate.


Assuntos
Resíduos de Alimentos , Ozônio , Eliminação de Resíduos , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Catálise , Poluentes Químicos da Água/análise
3.
Opt Express ; 28(8): 12439-12449, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403741

RESUMO

We theoretically study the interference of photoelectrons released from atomic p± orbitals in co-rotating and counter-rotating circularly polarized two-color laser pulses consisting of a strong 400-nm field and a weak 800-nm field. We find that in co-rotating fields the interference fringes in the photoelectron momentum distributions are nearly the same for p± orbitals, while in counter-rotating fields the interference fringes for p+ and p- orbitals oscillate out of phase with respect to the electron emission angle. The simulations based on the strong-field approximation show a good agreement with the numerical solutions of the time-dependent Schrödinger equation. We find that different phase distributions of the electron wave packets emitted from p+ and p- orbitals can be easily revealed by the counter-rotating circularly polarized two-color laser fields. We further show that the photoelectron interference patterns in the circularly polarized two-color laser fields record the time differences of the electron wave packets released within an optical cycle.

4.
Phys Rev Lett ; 122(18): 183202, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144893

RESUMO

Laser-induced electron tunneling underlies numerous emerging spectroscopic techniques to probe attosecond electron dynamics in atoms and molecules. The improvement of those techniques requires an accurate knowledge of the exit momentum for the tunneling wave packet. Here we demonstrate a photoelectron interferometric scheme to probe the electron momentum longitudinal to the tunnel direction at the tunnel exit by measuring the photoelectron holographic pattern in an orthogonally polarized two-color laser pulse. In this scheme, we use a perturbative 400-nm laser field to modulate the photoelectron holographic fringes generated by a strong 800-nm pulse. The fringe shift offers direct experimental access to the intermediate canonical momentum of the rescattering electron, allowing us to reconstruct the momentum offset at the tunnel exit with high accuracy. Our result unambiguously proves the existence of nonzero initial longitudinal momentum at the tunnel exit and provides fundamental insights into the nonquasistatic nature of the strong-field tunneling.

5.
Phys Rev Lett ; 122(5): 053202, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822014

RESUMO

The nonadiabaticity of quantum tunneling through an evolving barrier is relevant to resolving laser-driven dynamics of atoms and molecules at an attosecond timescale. Here, we propose and demonstrate a novel scheme to detect the nonadiabatic behavior of tunnel ionization studied in an attoclock configuration, without counting on the laser intensity calibration or the modeling of the Coulomb effect. In our scheme, the degree of nonadiabaticity for tunneling scenarios in elliptically polarized laser fields can be steered continuously simply with the pulse ellipticity, while the critical instantaneous vector potentials remain identical. We observe the characteristic feature of the measured photoelectron momentum distributions, which matches the distinctive prediction of nonadiabatic theories. In particular, our experiments demonstrate that the nonadiabatic initial transverse momentum at the tunnel exit is approximately proportional to the instantaneous effective Keldysh parameters in the tunneling regime, as predicted theoretically by Ohmi, Tolstikhin, and Morishita [Phys. Rev. A 92, 043402 (2015)PLRAAN1050-294710.1103/PhysRevA.92.043402]. Our study clarifies a long-standing controversy over the validation of the adiabatic approximation and will substantially advance studies of laser-induced ultrafast dynamics in experiments.

6.
Opt Lett ; 43(14): 3220-3223, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30004536

RESUMO

We report on the scaling of the photoelectron holography with the laser ellipticity in strong-field atomic ionization. We find that the spacing of the holographic fringe gradually decreases with increasing of the ellipticity. In terms of the strong-field approximation, the scaling of the fringe spacing with the laser ellipticity is explained by the effect of the initial transverse momenta at the tunnel exit. With increasing of the laser ellipticity, a ridge structure arising from forward scattering electrons is observed in the low-energy region of the electron momentum distribution. An analytic formula is obtained that demarcates the phase diagram for the observation of the holographic pattern and ridge structure in elliptically polarized laser fields.

7.
Opt Express ; 26(10): 13666-13676, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801389

RESUMO

We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

8.
Environ Sci Pollut Res Int ; 21(3): 2358-2366, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24062065

RESUMO

Concentrations of aqueous-phase nonylphenol (NP), a well-known endocrine-disrupting chemical, are shown to be reduced effectively via reaction with lignin peroxidase (LiP) or horseradish peroxidase (HRP) and hydrogen peroxide. We systematically assessed their reaction efficiencies at varying conditions, and the results have confirmed that the catalytic performance of LiP toward NP was more efficient than that of HRP under experimental conditions. Mass spectrum analysis demonstrated that polymerization through radical-radical coupling mechanism was the pathway leading to NP transformation. Our molecular modeling with the assistance of ab initio suggested the coupling of NP likely proceeded via covalent bonding between two NP radicals at their unsubstituted carbons in phenolic rings. Data from acute immobilization tests with Daphnia confirm that NP toxicity is effectively eliminated by LiP/HRP-catalyzed NP removal. The findings in this study provide useful information for understanding LiP/HRP-mediated NP reactions, and comparison of enzymatic performance can present their advantages for up-scale applications in water/wastewater treatment.


Assuntos
Peroxidase do Rábano Silvestre/química , Peroxidases/química , Fenóis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Peróxido de Hidrogênio/química , Modelos Químicos , Oxirredução , Fenóis/análise , Poluentes Químicos da Água/análise
9.
Sci Rep ; 3: 3126, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24185130

RESUMO

Horseradish peroxidase (HRP) mediates efficient conversion of many phenolic contaminants and thus has potential applications for pollution control. Such potentially important applications suffer however from the fact that the enzyme becomes quickly inactivated during phenol oxidation and polymerization. The work here provides the first experimental data of heme consumption and iron releases to support the hypothesis that HRP is inactivated by heme destruction. Product of heme destruction is identified using liquid chromatography with mass spectrometry. The heme macrocycle destruction involving deprivation of the heme iron and oxidation of the 4-vinyl group in heme occurs as a result of the reaction. We also demonstrated that heme consumption and iron releases resulting from HRP destruction are largely reduced in the presence of polyethylene glycol (PEG), providing the first evidence to indicate that heme destruction is effectively suppressed by co-dissolved PEG. These findings advance a better understanding of the mechanisms of HRP inactivation.


Assuntos
Ativação Enzimática , Peroxidase do Rábano Silvestre/antagonistas & inibidores , Heme/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Ferro/química , Ferro/metabolismo , Fenol/química , Fenol/metabolismo , Polietilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...