Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chin Med ; 18(1): 150, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957754

RESUMO

BACKGROUND: In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS: C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS: BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS: Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.

2.
Sci Bull (Beijing) ; 67(12): 1284-1294, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546158

RESUMO

Atrial fibrillation is an "invisible killer" of human health. It often induces high-risk diseases, such as myocardial infarction, stroke, and heart failure. Fortunately, atrial fibrillation can be diagnosed and treated early. Low-level vagus nerve stimulation (LL-VNS) is a promising therapeutic method for atrial fibrillation. However, some fundamental challenges still need to be overcome in terms of flexibility, miniaturization, and long-term service of bioelectric stimulation devices. Here, we designed a closed-loop self-powered LL-VNS system that can monitor the patient's pulse wave status in real time and conduct stimulation impulses automatically during the development of atrial fibrillation. The implant is a hybrid nanogenerator (H-NG), which is flexible, light weight, and simple, even without electronic circuits, components, and batteries. The maximum output of the H-NG was 14.8 V and 17.8 µA (peak to peak). In the in vivo effect verification study, the atrial fibrillation duration significantly decreased by 90% after LL-VNS therapy, and myocardial fibrosis and atrial connexin levels were effectively improved. Notably, the anti-inflammatory effect triggered by mediating the NF-κB and AP-1 pathways in our therapeutic system is observed. Overall, this implantable bioelectronic device is expected to be used for self-powerability, intelligentization, portability for management, and therapy of chronic diseases.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Estimulação do Nervo Vago , Humanos , Fibrilação Atrial/terapia , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiologia , Átrios do Coração
3.
J Control Release ; 350: 898-921, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089171

RESUMO

Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.


Assuntos
Hidrogéis , Nanoestruturas , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/química , Nanoestruturas/química
4.
Front Psychiatry ; 13: 815211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370823

RESUMO

Background: Depressive disorder is the leading cause of disability and suicidality worldwide. Metabolites are considered indicators and regulators of depression. However, the pathophysiology of the prefrontal cortex (PFC) in depression remains unclear. Methods: A chronic unpredictable mild stress (CUMS) model and a maturation rodent model of depression was used to investigate metabolic changes in the PFC. Eighteen male Sprague-Dawley rats were randomly divided into CUMS and control groups. The sucrose preference test (SPT) and forced swimming test (FST) were employed to evaluate and record depression-associated behaviors and changes in body weight (BW). High-performance liquid chromatography-tandem mass spectrometry was applied to test metabolites in rat PFC. Furthermore, principal component analysis and orthogonal partial least-squares discriminant analysis were employed to identify differentially abundant metabolites. Metabolic pathways were analyzed using MetaboAnalyst. Finally, a metabolite-protein interaction network was established to illustrate the function of differential metabolites. Results: SPT and FST results confirmed successful establishment of the CUMS-induced depression-like behavior model in rats. Five metabolites, including 1-methylnicotinamide, 3-methylhistidine, acetylcholine, glycerophospho-N-palmitoyl ethanolamine, α-D-mannose 1-phosphate, were identified as potential biomarkers of depression. Four pathways changed in the CUMS group. Metabolite-protein interaction analysis revealed that 10 pathways play roles in the metabolism of depression. Conclusion: Five potential biomarkers were identified in the PFC and metabolite-protein interactions associated with metabolic pathophysiological processes were explored using the CUMS model. The results of this study will assist physicians and scientists in discovering potential diagnostic markers and novel therapeutic targets for depression.

5.
Comput Biol Med ; 145: 105457, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366469

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) keeps spreading globally. Chinese medicine (CM) exerts a critical role for the prevention or therapy of COVID-19 in an integrative and holistic way. However, mining and development of early, efficient, multisite binding CMs that inhibit the cytokine storm are imminent. METHODS: The formulae were extracted retrospectively from clinical records in Hunan Province. Clinical data mining analysis and association rule analysis were employed for mining the high-frequency herbal pairs and groups from formulae. Network pharmacology methods were applied to initially explore the most critical pair's hub targets, active ingredients, and potential mechanisms. The binding power of active ingredients to the hub targets was verified by molecular docking. RESULTS: Eight hundred sixty-two prescriptions were obtained from 320 moderate COVID-19 through the Hunan Provincial Health Commission. Glycyrrhizae Radix et Rhizoma (Gancao) and Pinelliae Rhizoma (Banxia) were used with the highest frequency and support. There were 49 potential genes associated with Gancao-Banxia pair against moderate COVID-19 patients. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that Gancao-Banxia might act via inflammatory response, viral defense, and immune responses signaling pathways. IL-6 and STAT3 were the two most hub targets in the protein-protein interaction (PPI) network. The binding of five active ingredients originated from Gancao-Banxia to IL-6-STAT3 was verified by molecular docking, namely quercetin, coniferin, licochalcone a, Licoagrocarpin and (3S,6S)-3-(benzyl)-6-(4-hydroxybenzyl)piperazine-2,5-quinone, maximizing therapeutic efficacy. CONCLUSIONS: This work provided some potential candidate Chinese medicine formulas for moderate COVID-19. Among them, Gancao-Banxia was considered the most potential herbal pair. Bioinformatic data demonstrated that Gancao-Banxia pair may achieve dual inhibition of IL-6-STAT3 via directly interacting with IL-6 and STAT3, suppressing the IL-6 amplifier. SARS-CoV-2 models will be needed to validate this possibility in the future.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Mineração de Dados , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza , Humanos , Interleucina-6/metabolismo , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Estudos Retrospectivos , SARS-CoV-2 , Fator de Transcrição STAT3/metabolismo
6.
Front Neuroinform ; 16: 794342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311004

RESUMO

Traumatic brain injury (TBI) is a complex injury with a multi-faceted recovery process. Long non-coding RNAs (lncRNAs) are demonstrated to be involved in central nervous system (CNS) disorders. However, the roles of lncRNAs in long-term neurological deficits post-TBI are poorly understood. The present study depicted the microarray's lncRNA and messenger RNA (mRNA) profiles at 14 days in TBI mice hippocampi. LncRNA and mRNA microarray was used to identify differentially expressed genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the microarray results. Bioinformatics analysis [including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, lncRNA-mRNA co-expression network, and lncRNA-miRNA-mRNA network] were applied to explore the underlying mechanism. A total of 264 differentially expressed lncRNAs and 232 expressed mRNAs were identified (fold change > 1.5 and P-value < 0.05). Altered genes were enriched in inflammation, immune response, blood-brain barrier, glutamatergic neurological effects, and neuroactive ligand-receptor, which may be associated with TBI-induced pathophysiologic changes in the long-term neurological deficits. The lncRNAs-mRNAs co-expression network was generated for 74 lncRNA-mRNA pairs, most of which are positive correlations. The lncRNA-miRNA-mRNA interaction network included 12 lncRNAs, 59 miRNAs, and 25 mRNAs. Numerous significantly altered lncRNAs and mRNAs in mice hippocampi were enriched in inflammation and immune response. Furthermore, these dysregulated lncRNAs and mRNAs may be promising therapeutic targets to overcome obstacles in long-term recovery following TBI.

7.
J Nanobiotechnology ; 20(1): 78, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164792

RESUMO

BACKGROUND: Despite novel advances in screening, targeting and immunotherapies, early diagnosis and satisfactory treatments against hepatocellular carcinoma (HCC) remain formidable challenges. Given the unique advantages, carbon quantum dots (CQDs) become a smart theranostic nanomaterial for cancer diagnosis and therapy. RESULTS: In this work, a type of bio-friendly CQDs, trichrome-tryptophan-sorbitol CQDs (TC-WS-CQDs), is synthesized from natural biocompatible tryptophan via the one-pot hydrothermal method. Compared with normal hepatocytes, a much stronger green fluorescence is detected in HCC cells, indicating the ability of TC-WS-CQDs to target HCC cells. Furthermore, green-emitting TC-WS-CQDs generate large amounts of reactive oxygen species (ROS), leading to autophagy of HCC cells. Additionally, the green-emitting TC-WS-CQDs perform significant tumor inhibition by inducing autophagy via p53-AMPK pathway in vitro and in vivo studies with almost no systemic toxicity. CONCLUSIONS: The results may highlight a promising anticancer nanotheranostic strategy with integration of diagnosis, targeting, and therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pontos Quânticos , Carbono/farmacologia , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Medicina de Precisão , Sorbitol , Triptofano
8.
J Nanobiotechnology ; 19(1): 320, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645456

RESUMO

Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects.


Assuntos
Preparações de Plantas , Pontos Quânticos , Nanomedicina Teranóstica , Animais , Carbono , Medicina Herbária , Humanos , Camundongos , Fitoterapia
9.
Water Res ; 205: 117669, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597991

RESUMO

Herein, permanganate [Mn(VII)] was activated by simulated solar (SS) (SS/Mn(VII)), resulting in rapid degradation of micropollutants in several minutes, with rates of target micropollutants outnumbered those in the Mn(VII) alone and SS. To explore the mechanism in this process, 4-cholorphenol (4-CP), p-hydroxybenzoic acid (p-HBA), and enrofloxacin (ENR) were selected as model compounds. Lines of evidence indicated that reactive manganese species (RMnS) (i.e., Mn(III) and Mn(V)) rather than radicals from Mn(VII) photolysis participated in the conversion of model compounds. Interestingly, roles of RMnS differed among three model compounds, suggesting their selectivity toward micropollutants. Increasing Mn(VII) dosage proved greater micropollutant degradation, while impacts of pH on SS/Mn(VII) performance varied among model compounds. P-HBA and ENR showed the lowest degradation efficiency at alkaline, whereas 4-CP demonstrated the best performance at alkaline, indicating the reactivity of RMnS varied toward micropollutants at different pH values. The quantum yield of Mn(VII) was 8.36 ± 0.03 X 10-6 mol Einstein-1 at pH 7.0. Effects of common co-existing constituents (Cl-, HCO3-, and humic acid (HA)) on micropollutant degradation by SS/Mn(VII) were examined. Specifically, HCO3- positively influenced the 4-CP and p-HBA degradation, whereas ENR was not affected, likely owing to the selectivity of RMnS-HCO3- complexes. HA was conducive to degrade p-HBA due to the production of RMnS-HA complexes, but unfavorable for ENR and 4-CP degradation because of the competitive light absorption and Mn(VII). Furthermore, a number of degradation products of 4-CP, p-HBA, and ENR were identified and possible pathways were proposed accordingly. The effectiveness of this process for micropollutant degradation in real waters, natural sunlight, ultraviolet and visible light via cut-off filtering SS emission was confirmed. This work revealed a great potential of applying SS/Mn(VII) for the marked degradation of micropollutants and facilitated the understandings of Mn(III)/Mn(V) behaviors.


Assuntos
Compostos de Manganês , Manganês , Oxirredução , Óxidos
10.
Front Pharmacol ; 12: 632407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025405

RESUMO

Intracerebral hemorrhage (ICH) is a life-threatening type of stroke that lacks effective treatments. The inflammatory response following ICH is a vital response that affects brain repair and organism recovery. The nuclear factor κB (NF-κB) signaling pathway is considered one of the most important inflammatory response pathways and one of its response pathways, the noncanonical NF-κB signaling pathway, is known to be associated with persistent effect and chronic inflammation. NF-κB-inducing kinase (NIK) via the noncanonical NF-κB signaling plays a key role in controlling inflammation. Here, we investigated potential effects of the traditional Chinese medicine formula Buyang Huanwu Decoction (BYHWD) on inflammatory response in a rat model of ICH recovery by inhibiting the NIK-mediated the noncanonical NF-κB signaling pathway. In the first part, rats were randomly divided into three groups: the sham group, the ICH group, and the BYHWD group. ICH was induced in rats by injecting collagenase (type VII) into the right globus pallidus of rats' brain. For the BYHWD group, rats were administered BYHWD (4.36 g/kg) once a day by intragastric administration until they were sacrificed. Neurological function was evaluated in rats by a modified neurological severity score (mNSS), the corner turn test, and the foot-fault test. The cerebral edema showed the degree of inflammatory response by sacrificed brain water content. Western blot and real-time quantitative reverse transcription PCR tested the activity of inflammatory response and noncanonical NF-κB signaling. In the second part, siRNA treatment and assessment of inflammation level as well as alterations in the noncanonical NF-κB signaling were performed to determine whether the effect of BYHWD on inflammatory response was mediated by suppression of NIK via the noncanonical NF-κB signaling pathway. We show that BYHWD treated rats exhibited: (i) better health conditions and better neural functional recovery; (ii) decreased inflammatory cytokine and the edema; (iii) reduced expression of NIK, a key protein in unregulated the noncanonical NF-κB signaling pathways; (iv) when compared with pretreated rats with NIK targeting (NIK siRNAs), showed the same effect of inhibiting the pathway and decreased inflammatory cytokine. BYHWD can attenuate the inflammatory response during ICH recovery in rats by inhibiting the NIK-mediated noncanonical NF-κB signaling pathway.

11.
Front Mol Neurosci ; 14: 785938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145378

RESUMO

BACKGROUND: Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. METHODS: Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). RESULTS: In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. CONCLUSION: Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.

12.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(11): 2588-9, 2010 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-21097440

RESUMO

OBJECTIVE: To observe the effect of plasmaslyte A on the liver function of patients receiving cardiac surgery with extracorporeal circulation. METHODS: Sixty patients scheduled for cardiac surgery were randomized to receive plasmaslyte A (group P, n=30) and ringer lactate solution (group R, n=30). The two agents were used in priming heart-lung machine and intra- and postoperative crystal solution. All the patients were examined for the levels of AST, ALT and Lac the day before and at 2 h and 1, 3 and 7 days after the surgery. The time of extubation and length of stay at the ICU were record. RESULTS: The levels of ALT, AST and Lac in group P were significantly lower than those in group R (P<0.05), and the duration of intubation and stay at the ICU was shorter in group P (P<0.05). CONCLUSION: Plasmaslyte A can markedly reduce the level of AST, ALT and Lac and protect the liver function of patients undergoing cardiac surgery with extracorporeal circulation.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Circulação Extracorpórea , Soluções Isotônicas/farmacologia , Adulto , Idoso , Feminino , Humanos , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Lactato de Ringer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...