Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209390

RESUMO

Apiezoelectric ultrasonic transducer (PUT) is widely used in nondestructive testing, medical imaging, and particle manipulation, etc., and the performance of the PUT determines its functional performance and effectiveness in these applications. The optimization design method of a PUT is very important for the fabrication of a high-performance PUT. In this paper, traditional and efficient optimization design methods for a PUT are presented. The traditional optimization design methods are mainly based on an analytical model, an equivalent circuit model, or a finite element model and the design parameters are adjusted by a trial-and-error method, which relies on the experience of experts and has a relatively low efficiency. Recently, by combining intelligent optimization algorithms, efficient optimization design methods for a PUT have been developed based on a traditional model or a data-driven model, which can effectively improve the design efficiency of a PUT and reduce its development cycle and cost. The advantages and disadvantages of the presented methods are compared and discussed. Finally, the optimization design methods for PUT are concluded, and their future perspectives are discussed.

2.
J Phys Chem Lett ; 11(17): 7224-7231, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790316

RESUMO

As ideal building blocks for optoelectronic devices, one-dimensional (1D) single-crystal perovskite microwires (MWs) have received widespread attention due to their unique physical and chemical properties. Herein, a one-step solution in-plane self-assembly method is proposed to directly grow millimeter-long CsPbBr3 MWs with superior crystal quality at atmospheric environment. This method effectively avoids the use of toxic antisolvents. Furthermore, a MW-based photodetector is successfully fabricated, showing high photoresponsivity (20 A/W) and fast response (less than 0.3 ms). The stability of the photodetector is also confirmed by aging MW in air for 60 days, which shows a negligible change of photocurrent from 1.29 to 1.25 nA (-3 V) under the same experimental conditions. This work provides a low-cost and fast synthesis method for the preparation of single-crystal perovskite MWs and demonstrates their potential application for high-performance and stable photoelectronic device.

3.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168841

RESUMO

In the traditional single polarimetric persistent scatterers interferometric (PSI) technology, the amplitude dispersion index (ADI) is usually used to select persistent scatterer candidates (PSC). Obviously, based on single polarimetric information, it is difficult to use the statistical characteristics for comprehensively describing the temporal stability of scatterers, which leads to a decrease in persistent scatterer (PS) density. Considering that the temporal polarimetric stationarity of PS, the paper is based on complex Wishart distribution and proposes the polarimetric stationarity omnibus test (PSOT) for identifying PSC. The nonstationary pixels can be removed by the preset significance threshold, which reduces the subsequent processing error and the calculation cost. Then, the exhaustive search polarimetric optimization (ESPO) method is selected for improving the phase quality of PSCs while suppressing the sidelobe of the strong scatterer effectively. For validating the effectiveness of the proposed method, we select a time-series quad-polarimetric ALOS PALSAR-1 images in an urban area as experimental data and mainly perform five group experiments for detailed analysis, including the PSOT+ESPO, ADI+ESPO, ADI+HH, ADI+HV, and ADI+VV. The results show that the proposed PSOT+ESPO method has a better performance on both PSC selection and interferometric phase optimization aspects than that of other methods. Specifically, compared to the last four methods, both the PSCs and PSs identified by the proposed PSOT+ESPO are more concentrated in the high-coherence region. The PSs with the standard deviation (STD) less than 5mm in the PSOT+ESPO method account for 94% of all PSs, which is greater than that of the ADI+ESPO, ADI+HH, ADI+HV, and ADI+VV methods, respectively.

4.
ACS Appl Mater Interfaces ; 12(11): 13473-13480, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32072809

RESUMO

Independent and zero-maintenance systems would be in urgent need in the near future internet of things. Here, we present high-performance, self-driven organic/inorganic heterojunction ultraviolet (UV) photodetectors (PDs) by in situ polymerization of polyaniline (PANI) on Gallium nitride microwires. The GaN microwires with a high crystalline quality are grown on patterned Si substrates by metal organic chemical vapor deposition. Using a facile in situ chemical polymerization method, PANI is conformally coated on the surface of GaN microwires. The constructed GaN/PANI hybrid microwire PD exhibits a high responsivity of 178 mA/W, a remarkable detectivity of 4.67 × 1014 jones, and an ultrafast UV photoresponse speed (rise time of 0.2 ms and fall time of 0.3 ms) under zero bias. The intimate heterojunction in the form of N-Ga-N bonds between GaN and PANI may account for the observed high performances. The presented self-driven microwire UV PDs featuring ultrahigh-speed (sub-millisecond) response to UV light may find applications in future nano/micro-photosensor networks.

5.
J Biomed Biotechnol ; 2011: 743763, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190858

RESUMO

The high mortality associated with conventionally resuscitated septic shock and the subsequent multiple-organ failure remain a very significant and costly clinical problem. Conventional simple intravenous resuscitation (CR) from septic shock often fails to restore the progressive splanchnic vasoconstriction and hypoperfusion, and fails to reverse gut-derived systemic inflammatory response and fluid sequestration. Numerous interventions have been used to protect organ systems and cellular viability from the lethal injury accompanying hypoperfusion and ischemia but none of these efforts have been sufficient to halt or reverse the main course of the pathophysiology noted with conventional resuscitated shock. Recently, some studies have found that in hemorrhagic shock, direct peritoneal resuscitation (DPR) not only produces sustained hyperperfusion in viscera but also has immunomodulatory and anti-fluid sequestration effects. Although the etiology and pathogenesis of septic shock and hemorrhagic shock differ, both kinds of shock result in hypoperfusion of the intestines and other internal organs. In this paper, we seek to determine whether DPR has a similar therapeutic effect on septic shock/resuscitation.


Assuntos
Ressuscitação/métodos , Choque Séptico/terapia , Circulação Esplâncnica , Vasoconstrição , Animais , Isquemia/fisiopatologia , Isquemia/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Choque Séptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...