Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(13): 7712-7719, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424754

RESUMO

Two energetic bicyclic scaffolds (furazan-isoxazole and furazan-1,3,4-oxadiazole) were constructed via different cyclization reactions. Based on the energetic bicyclic scaffolds, the energetic compounds, 3-(4-nitraminofurazan-3-ly)-isoxazole-5-methylnitrate 1c and 5-(4-nitraminofurazan-3-ly)-1,3,4-oxadiazole-2-methylnitrate 2c, were designed and synthesized in good yields. Because of the acidity of nitramine, the corresponding energetic ionic salts, ammonium 3-(4-nitraminofurazan-3-ly)isoxazole-5-methylnitrate 1d and ammonium 5-(4-nitraminofurazan-3-ly)-1,3,4-oxadiazole-2-methylnitrate 2e, were also obtained and well characterized, their structures were further determined by X-ray single crystal diffraction. To have a better understanding of the structure-property relationships of furazan-bicyclic scaffolds and nitrate groups, their thermal behaviors, detonation performances and the sensitivities were investigated via differential scanning calorimetry (DSC), ESP analysis, Hirshfeld surfaces calculation, EXPLO5 program and BAM standard techniques. Compared with those of ammonium 5-(4-nitraminofurazan-3-ly)-1,2,4-oxadiazole-2-methylnitrate 3e, the results show that all these methyl nitrate energetic compounds based on bicyclic scaffolds of furazan-isofurazan exhibit good detonation performances and extraordinary insensitivities. As supported by experimental and theoretical data, the formation of energetic ionic salts causes an increase of the weak interactions, significantly improving the thermal performance over 110 °C.

2.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885900

RESUMO

Rearrangement reactions are efficient strategies in organic synthesis and contribute enormously to the development of energetic materials. Here, we report on the preparation of a fused energetic structure of 7-nitro-3,5-dihydro-4H-pyrazolo[4,3-d][1,2,3]triazin-4-one (NPTO) based on a novel Hofmann-type rearrangement. The 1,2,3-triazine unit was introduced into the fused bicyclic skeleton from a pyrazole unit for the first time. The new compound of NPTO was fully characterized using multinuclear NMR and IR spectroscopy, elemental analysis as well as X-ray diffraction studies. The thermal behaviors and detonation properties of NPTO were investigated through a differential scanning calorimetry (DSC-TG) approach and EXPLO5 program-based calculations, respectively. The calculation results showed similar detonation performances between NPTO and the energetic materials of DNPP and ANPP, indicating that NPTO has a good application perspective in insensitive explosives and propellants.

3.
Front Chem ; 7: 559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448264

RESUMO

Density, detonation property, and sensitivity may be the most valued features when evaluating an energetic material. By reasoning structure-property relationships, a nitro-free planar energetic material with high nitrogen and oxygen content, 7-hydroxy-difurazano[3,4-b:3',4'-f]furoxano[3″,4″-d]azepine (4), was synthesized using a unique and facile approach. The structure was fully characterized by IR and NMR spectra, elemental analysis, differential scanning calorimetry (DSC), and single-crystal X-ray diffraction. The expected properties of 4, including a high density of 1.92 g cm-3, high detonation velocity of 8,875 m s-1, and low mechanical sensitivities (impact sensitivity, 21 J and friction sensitivity, >360 N), confirm our strategy. Interestingly, the single-crystal structures of 4 reveal expected face-to-face and edge-to-face π-interactions in the crystal stacking. The remarkable differences in crystal stacking of 4 provide unequivocal evidence that face-to-face π-π interactions contribute significantly to closer assembly and higher density.

4.
Sci Rep ; 9(1): 4321, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867447

RESUMO

It is of current development to construct high-performance energetic compounds by aggregation of energetic groups with dense arrangement. In this study, a hydrogen-free high-density energetic 3,4-bis(3-nitrofuroxan-4-yl)furoxan (BNTFO-I) was designed and synthesized in a simple, and straightforward manner. Its isomer, 3,4-bis(4-nitrofuroxan-3-yl)furoxan (BNTFO-IV), was also obtained by isomerization. The structures of BNTFO-I and BNTFO-IV were confirmed by single-crystal X-ray analysis for the first time. Surprisingly, BNTFO-I has a remarkable calculated crystal density of 1983 g cm-3 at 296 K, which is distinctly higher than BNTFO-IV (1.936 g cm-3, 296 K), and ranks highest among azole-based CNO compounds yet reported. It is noteworthy that BNTFO-I exhibits excellent calculated detonation properties (vD, 9867 m s-1, P, 45.0 GPa). The interesting configuration differences of BNTFO-I and BNTFO-IV provide insight into the design of new advanced energetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...