Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(1): 200770, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596299

RESUMO

Cancer immunotherapy based on bioengineering of bacteria can effectively increase anticancer immune responses. However, few studies have investigated the antitumor potential of engineering Proteus mirabilis. Here, we genetically engineered P. mirabilis to overexpress Vibrio vulnificus flagellin B (FlaB) protein in a murine CT26 tumor model. We found that a large number of FlaB-expressing P. mirabilis colonized tumor tissues, enhanced T cell infiltration and secretion of cytokines and cytotoxic proteins in tumors, and significantly restrained tumor growth. Our results also showed that programmed death ligand 1 (PD-L1) expression in tumor-infiltrating immune cells was elevated after treatment with FlaB-expressing P. mirabilis. In addition, combination therapy with FlaB-expressing P. mirabilis and PD-L1 blockade synergistically improved antitumor efficacy by enhancing infiltration of CD8+ cells. Furthermore, serum liver biochemical indices of mice increased in the short term in both the P. mirabilis and the FlaB-expressing P. mirabilis treatment groups but gradually recovered in the later stage of treatment so that FlaB protein expression did not increase the toxicity of P. mirabilis in vivo. Taken together, our results suggest that P. mirabilis could serve as an engineered bacterium for bacterium-based cancer immunotherapy.

2.
Nano Lett ; 24(5): 1687-1694, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38253561

RESUMO

Revealing the in-depth structure-property relationship and designing specific capacity electrodes are particularly important for supercapacitors. Despite many efforts made to tune the composition and electronic structure of cobalt oxide for pseudocapacitance, insight into the [CoO]6 octahedron from the microstructure is still insufficient. Herein, we present a tunable [CoO]6 octahedron microstructure in LiCoO2 by a chemical delithiation process. The c-strained strain of the [CoO]6 octahedron is induced to form higher valence Co ions, and the (003) crystalline layer spacing increases to allow more rapid participation of OH- in the redox reaction. Interestingly, the specific capacity of L0.75CO2 is nearly four times higher than that of LiCoO2 at 10 mA g-1. The enhanced activity originated from the asymmetric strain [CoO]6 octahedra, resulting in enhanced electronic conductivity and Co-O hybridization for accelerated redox kinetics. This finding provides new insights into the modification strategy for pseudocapacitive transition metal oxides.

3.
Angew Chem Int Ed Engl ; 62(39): e202309614, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37552235

RESUMO

Conducting polymers with high theoretical capacitance and deformability are among the optimal candidates for compressible supercapacitor electrode materials. However, achieving both mechanical and electrochemical stabilities in a single electrode remains a great challenge. To address this issue, the "Polymer Chainmail" is proposed with reversible deformation capability and enhances stability because of the steric hindrance and charge compensation effect of doped anions. As a proof of concept, four common anions are selected as dopants for Poly(3,4-ethylenedioxythiophene) (PEDOT), and their effects on the adsorption and diffusion of H+ on PEDOT are verified using density functional theory calculations. Owing to the film formation effect, the PF 6 - ${{\rm{PF}}_6^- }$ doped PEDOT/nitrogen-doped carbon foam exhibits good mechanical properties. Furthermore, the composite demonstrates excellent rate performance and stability due to suitable anion doping. This finding provides new insights into the preparation of electrochemically stable conductive polymer-based compressible electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...