Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 12(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442579

RESUMO

As an indicator of health risk, the deposition of microparticles in terminal pulmonary acini is of great significance in the medical field. To control particulate pollution and optimize aerosol delivery, it is necessary to perform an in-depth study of the microparticle deposition in terminal pulmonary acini; however, little research has been done on this topic. This paper proposes a respiratory movement model of terminal pulmonary acini using an immersed boundary-lattice Boltzmann method. In addition, we explored the effect of gravity direction, respiratory rate, microparticle diameter, and other parameters on the microparticles deposition process and distribution, under the airflow in the acinar wall. It was found that the deposition of microparticles is sensitive to gravity direction, and the growth of the respiratory rate increases the rate of microparticle migration and deposition. It was observed that the gravity effect is enhanced by increasing the diameter of microparticles, causing a high deposition and dispersion rate. The study reveals the dynamic correlation between the respiration process and the movement of microparticles, which is of reference value to figure out the pathogenicity mechanism of inhalable particles and to optimize the aerosol delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...