Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 15(11): 1409-1419, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28301712

RESUMO

Removal of astringency by endogenously formed acetaldehyde, achieved by postharvest anaerobic treatment, is of critical importance for many types of persimmon fruit. Although an anaerobic environment accelerates de-astringency, it also has the deleterious effect of promoting excessive softening, reducing shelf life and marketability. Some hypoxia-responsive ethylene response factors (ERFs) participate in anaerobic de-astringency, but their role in accelerated softening was unclear. Undesirable rapid softening induced by high CO2 (95%) was ameliorated by adding the ethylene inhibitor 1-MCP (1 µL/L), resulting in reduced astringency while maintaining firmness, suggesting that CO2 -induced softening involves ethylene signalling. Among the hypoxia-responsive genes, expression of eight involved in fruit cell wall metabolism (Dkß-gal1/4, DkEGase1, DkPE1/2, DkPG1, DkXTH9/10) and three ethylene response factor genes (DkERF8/16/19) showed significant correlations with postdeastringency fruit softening. Dual-luciferase assay indicated that DkERF8/16/19 could trans-activate the DkXTH9 promoter and this interaction was abolished by a mutation introduced into the C-repeat/dehydration-responsive element of the DkXTH9 promoter, supporting the conclusion that these DkERFs bind directly to the DkXTH9 promoter and regulate this gene, which encodes an important cell wall metabolism enzyme. Some hypoxia-responsive ERF genes are involved in deastringency and softening, and this linkage was uncoupled by 1-MCP. Fruit of the Japanese cultivar 'Tonewase' provide a model for altered anaerobic response, as they lost astringency yet maintained firmness after CO2 treatment without 1-MCP and changes in cell wall enzymes and ERFs did not occur.


Assuntos
Diospyros/metabolismo , Etilenos/farmacologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Hipóxia/metabolismo , Dióxido de Carbono/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Ciclopropanos , Diospyros/enzimologia , Diospyros/genética , Diospyros/crescimento & desenvolvimento , Frutas/enzimologia , Frutas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hipóxia/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Taninos/metabolismo , Fatores de Transcrição
2.
Ying Yong Sheng Tai Xue Bao ; 25(3): 797-802, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24984499

RESUMO

A pot experiment was conducted to study the effects of adding different amounts of wheat straw (0 g x kg(-1), N0; 2.08 g x kg(-1), N1) and phosphorus (0 mg x kg(-1), P0; 100 mg x kg(-1), P1; 200 mg x kg(-1), P2; 400 mg x kg(-1), P3) on microorganism community in a soil of low-phosphorus. Adding straw and phosphorus had significant effects on the soil microbial total biomass (MTB), bacterial biomass (MB), fungal biomass (FB), and fungi to bacteria ratio (F/B), which all decreased in order of N1P1>N1P0>N1P2>N1P3>N0P1>N0P2>N0P3. MTB, MB, FB and F/B ratio of the wheat straw addition treatments were all significantly higher than in the non-straw addition treatments under the same level of phosphorus addition. As for the same wheat straw addition, MTB, MB, FB and F/B ratio increased firstly and then decreased with increasing the level of phosphorus addition, and the combinations of P1 level were optimal.


Assuntos
Fósforo/análise , Caules de Planta/química , Microbiologia do Solo , Solo/química , Triticum , Biomassa
3.
PLoS One ; 9(5): e97043, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24805136

RESUMO

A hypoxic environment is generally undesirable for most plants and stimulates anaerobic metabolism. It is a beneficial treatment, however, for the removal of astringency from persimmon to improve the fruit quality after harvest. High soluble tannins (SCTs) content is one of most important causes of astringency. High CO2 (95%) treatment effectively reduced SCTs in both "Mopan" and "Gongcheng-shuishi" persimmon fruit by causing increases in acetaldehyde. Using RNA-seq and realtime PCR, twelve ethylene response factor genes (DkERF11-22) were isolated and characterized, to determine those responsive to high CO2 treatment. Only two genes, DkERF19 and DkERF22, showed trans-activation effects on the promoters of deastringency-related genes pyruvate decarboxylase genes (DkPDC2 and DkPDC3) and the transcript levels of these genes was enhanced by hypoxia. Moreover, DkERF19 and the previously isolated DkERF9 had additive effects on activating the DkPDC2 promoter. Taken together, these results provide further evidence that transcriptome changes in the level of DkERF mRNAs regulate deastringency-related genes and their role in the mechanism of persimmon fruit deastringency is discussed.


Assuntos
Diospyros/genética , Etilenos/metabolismo , Frutas/genética , Fatores de Transcrição/genética , Dióxido de Carbono/metabolismo , Frutas/metabolismo , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , Hipóxia/genética , Regiões Promotoras Genéticas , Taninos/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/fisiologia
4.
J Exp Bot ; 63(18): 6393-405, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095993

RESUMO

The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO(2) and ethylene treatments efficiently removed the astringency from 'Mopan' persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF-DkADH/DkPDC cascade is involved in regulating persimmon de-astringency.


Assuntos
Álcool Desidrogenase/genética , Adstringentes/metabolismo , Diospyros/genética , Diospyros/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Piruvato Descarboxilase/genética , Álcool Desidrogenase/metabolismo , Anaerobiose , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proantocianidinas/metabolismo , Regiões Promotoras Genéticas , Piruvato Descarboxilase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de Proteína , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Planta ; 235(5): 895-906, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22101946

RESUMO

Thirteen ethylene signaling related genes were isolated and studied during ripening of non-astringent 'Yangfeng' and astringent 'Mopan' persimmon fruit. Some of these genes were characterized as ethylene responsive. Treatments, including ethylene and CO(2), had different effects on persimmon ripening, but overlapping roles in astringency removal, such as increasing the reduction in levels of soluble tannins. DkERS1, DkETR2, and DkERF8, may participate in persimmon fruit ripening and softening. The expression patterns of DkETR2, DkERF4, and DkERF5 had significant correlations with decreases in soluble tannins in 'Mopan' persimmon fruit, suggesting that these genes might be key components in persimmon fruit astringency removal and be the linkage between different treatments, while DkERF1 and DkERF6 may be specifically involved in CO(2) induced astringency removal. The possible roles of ethylene signaling genes in persimmon fruit astringency removal are discussed.


Assuntos
Dióxido de Carbono/metabolismo , Diospyros/genética , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , China , Diospyros/fisiologia , Genes de Plantas , Variação Genética , Genótipo , Transdução de Sinais , Taninos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...