Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(4): 4072-4080, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743011

RESUMO

A novel two-dimensional graphene oxide/sulfur-doped polyimide (GO/SPI) hybrid polymer photocatalyst was synthesized by a facile ultrasonic chemical method. The characterization results showed that the skeleton structure of SPI was not changed when the few layers of GO were wrapped on the surface. Due to the excellent charge transport characteristics of GO and the strong π-π stacking interaction between two-dimensional GO and SPI, the photogenerated carrier transport capability of the GO/SPI composites was significantly enhanced compared with that of SPI. The efficient transmission and separation of photogenerated charge carriers significantly improve the photocatalytic degradation of the methyl orange activity of the GO/SPI composite. This work provides a facile and new way for the synthesis of metal-free inorganic-organic composite photocatalysts with high efficiency and low cost.

2.
RSC Adv ; 13(2): 853-865, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686918

RESUMO

Efficient utilization of solar energy for photocatalytic hydrogen production and degradation of organic pollutants is one of the most promising approaches to solve the energy shortage and environmental pollution. A series of Co3O4/sulfur-doped polyimide (CO/SPI) direct Z-scheme nano-heterostructure photocatalysts was successfully prepared via a facile green thermal treatment method. The effects of Co3O4 nanoparticles on the structure, morphology, and optoelectronic properties of CO/SPI composite samples were systematically characterized by different spectroscopic methods. Characterization results confirmed that Co3O4 nanoparticles as an acid oxide catalyst promoted the oxidation stripping of bulk SPI to form SPI ultrathin nanosheets. Thus, the Co3O4 nanoparticles were firmly embedded on SPI ultrathin nanosheets to construct a direct Z-type CO/SPI nanostructure junction. Therefore, the activity and cycle stability of photocatalytic water splitting for hydrogen production and organic pollutant degradation were greatly improved under solar light irradiation. In particular, the 0.5CO/SPI composite sample displayed the highest activity with an average production rate of 127.2 µmol g-1 h-1, which is nearly 13 times and 106 times higher than that of SPI and Co3O4. This work provides a new avenue for constructing efficient inorganic-organic nanoheterostructured Z-type photocatalysts and takes an important step towards the efficient utilization of renewable energy.

3.
Polymers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559850

RESUMO

In this study, a novel direct Z-scheme SnS2 quantum dots/sulfur-doped polyimide (SQDs/SPI) photocatalyst was firstly fabricated by an in situ crystallization growth of SnS2 quantum dots on sulfur-doped polyimide through a facile hydrothermal method. The photocatalytic hydrogen production activity of 5SQDs/SPI samples reached 3526 µmoL g-1 in the coexistence of triethanolamine and methanol used as hole sacrificial agents, which is about 13 times higher than that of SPI under the same conditions and 42 times higher than that of SPI only as a hole sacrificial agent. The improvement can be related to the direct Z-scheme charge transfer in the tight interface between SQDs and SPI, which promoted rapid separation and significantly prolonged the lifetime of photoexcited carriers. The Z-scheme charge transfer mechanism was proposed. This discovery comes up with a new strategy for the development of an efficient, environmentally friendly, and sustainable sulfide quantum dots/polymer non-noble metal photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...