Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124344, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885779

RESUMO

The enhancement of conventional liposome and lipid nanoparticle (LNP) methodologies in the formulation and deployment of messenger RNA (mRNA) vaccines necessitates further refinement to augment both their effectiveness and biosafety profiles. Additionally, researching these innovative delivery carrier materials represents both a prominent focus and a significant challenge in the current scientific landscape. Here we designed new chiral self-assembling peptides as the delivery carrier for RNA vaccines to study the underlying mechanisms in the feline infectious peritonitis virus (FIPV) model system. Firstly, we successfully transcribed mature enhanced green fluorescent protein (EGFP) mRNA and feline infectious peritonitis virus nucleocapsid (FIPV N) mRNA in vitro from optimized vectors. Subsequently, we developed chiral self-assembling peptide-1 (CSP-1) and chiral self-assembling peptide-2 (CSP-2) peptides, taking into account the physical and chemical characteristics of nucleic acid molecules as well as the principles of self-assembling peptides, with the aim of improving the delivery efficiency of mRNA molecule complexes. We determined the optimal coating ratio between CSP and mRNA by electrophoretic mobility shift assay. We found that the peptides and mRNA complexes can protect the mRNA from RNase A enzyme and efficiently deliver mRNA into cells for target antigen proteins expression. Animal experiments confirmed that CSP-1/mRNA complex can effectively trigger immune response mechanisms involving IFN-γ and T cell activation. It can also stimulate CD4+ and CD8+ T cell proliferation and induce serum antibody titers up to 10,000 times higher. And no pathological changes were observed by immunohistochemistry in liver, spleen, and kidney, indicating that CSP-1 may be a safe and promising delivery system for mRNA vaccines. Methodologically, this research represents a novel endeavor in the utilization of chiral self-assembling peptides within the realm of mRNA vaccines. This approach not only introduces fresh prospects for employing such nanomaterials in various mRNA vaccines but also expands the potential for developing small molecules, proteins, and antibodies. Furthermore, it paves the way for new clinical applications of existing pharmaceuticals.

2.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731435

RESUMO

Self-assembled peptide-based nanobiomaterials exhibit promising prospects for drug delivery applications owing to their commendable biocompatibility and biodegradability, facile tissue uptake and utilization, and minimal or negligible unexpected toxicity. TFF3 is an active peptide autonomously secreted by gastric mucosal cells, possessing multiple biological functions. It acts on the surface of the gastric mucosa, facilitating the repair process of gastric mucosal damage. However, when used as a drug, TFF3 faces significant challenges, including short retention time in the gastric mucosal cavity and deactivation due to degradation by stomach acid. In response to this challenge, we developed a self-assembled short peptide hydrogel, Rqdl10, designed as a delivery vehicle for TFF3. Our investigation encompasses an assessment of its properties, biocompatibility, controlled release of TFF3, and the mechanism underlying the promotion of gastric mucosal injury repair. Congo red/aniline blue staining revealed that Rqdl10 promptly self-assembled in PBS, forming hydrogels. Circular dichroism spectra indicated the presence of a stable ß-sheet secondary structure in the Rqdl10 hydrogel. Cryo-scanning electron microscopy and atomic force microscopy observations demonstrated that the Rqdl10 formed vesicle-like structures in the PBS, which were interconnected to construct a three-dimensional nanostructure. Moreover, the Rqdl10 hydrogel exhibited outstanding biocompatibility and could sustainably and slowly release TFF3. The utilization of the Rqdl10 hydrogel as a carrier for TFF3 substantially augmented its proliferative and migratory capabilities, while concurrently bolstering its anti-inflammatory and anti-apoptotic attributes following gastric mucosal injury. Our findings underscore the immense potential of the self-assembled peptide hydrogel Rqdl10 for biomedical applications, promising significant contributions to healthcare science.


Assuntos
Mucosa Gástrica , Hidrogéis , Peptídeos , Fator Trefoil-3 , Hidrogéis/química , Fator Trefoil-3/química , Fator Trefoil-3/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Sistemas de Liberação de Medicamentos , Camundongos , Cicatrização/efeitos dos fármacos
3.
Biochem Biophys Res Commun ; 704: 149701, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38408415

RESUMO

Human bronchial epithelial cells in the airway system, as the primary barrier between humans and the surrounding environment, assume a crucial function in orchestrating the processes of airway inflammation. Target to develop a new three-dimensional (3D) inflammatory model to airway system, and here we report a strategy by using self-assembling D-form peptide to cover the process. By testing physicochemical properties and biocompatibility of Sciobio-Ⅲ, we confirmed that it can rapidly self-assembles under the trigger of ions to form a 3D nanonetwork-like scaffold, which supports 3D cell culture including the cell strains like BEAS-2B cells. Subsequently, inflammation model was established by lipopolysaccharide (LPS), the expression of some markers of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-8 (IL-8), the levels of relevant inflammatory factors were measured by RT-qPCR and the secretion profile of inflammatory cytokines by ELISA, are obtained the quite difference effects in 2D and 3D microenvironment, which suggested Sciobio-Ⅲ hydrogel is an ideal scaffold that create the microenvironment for 3D cell culture. Here we are success to establish a 3D inflammation model for airway system. This innovative model allows for rapid and accurate evaluation of drug metabolism and toxicological side effects, hope to use in drug screening for airway inflammatory diseases and beyond.


Assuntos
Brônquios , Inflamação , Humanos , Inflamação/metabolismo , Células Cultivadas , Interleucina-1beta/metabolismo , Células Epiteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Total Environ ; 914: 169986, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211865

RESUMO

Landfill treatment of municipal solid waste incineration fly ash (MSWI FA) after stabilization is the primary disposal technology. However, only few studies have assessed the stability of MSWI-FA-chelated products in different landfill scenarios. In this study, three commonly used dithiocarbamate (DTC)-based organic chelating agents (CAs) (TS-300, SDD, and PD) were selected to stabilize heavy metals (HMs) in MSWI FA. In addition, the leaching toxicity and environmental risks of the chelated products were assessed in different disposal environments. The results demonstrate that the HM leaching concentrations of the chelated products met the concentration limits of the sanitary landfill standard (GB16889-2008; mixed Landfill Scenario) for the three CAs at a low additive level (0.3 %). However, in the compartmentalized landfill scenario (the leaching agent was acid rain), the leaching of HMs from the chelated products met the standard when TS-300, SDD, and PD were added at 1.5 %, 6.0 %, and 8.0 %, respectively. Additionally, Pb, Zn, and Cd in the chelated products from the 1.5 %-TS-300 and 6.0 %-SDD groups met the leaching limits within the pH ranges 6-12 and 7-12, 6-12 and 7-12, and 8-12 and 8-12, respectively. This was primarily due of TS-300's multiple DTC groups forming stable chain-like macromolecular chelates with Pb. However, although the environmental risks associated with Pb, Zn, and Cd in the initial (0-d) chelated products of the 1.5 %-TS-300 and 6.0 %-SDD groups were minimized to low and negligible levels, there was a significant increase in the leaching of the three HMs after 28 d of storage. Therefore, with appropriate CA addition, although the leaching concentration of HMs in the chelated product may comply with the GB16889-2008 standards, it remains essential to consider its environmental risk, particularly in highly acidic or alkaline environments and during prolonged storage of the product.

5.
Biomacromolecules ; 25(3): 1408-1428, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38236703

RESUMO

The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.


Assuntos
Células Dendríticas , Hidrogéis , Hidrogéis/farmacologia , Imunidade Celular , Peptídeos/farmacologia , Peptídeos/química , Linfócitos T
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 770-777, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37666768

RESUMO

This research aims to investigate the encapsulation and controlled release effect of the newly developed self-assembling peptide R-LIFE-1 on exosomes. The gelling ability and morphological structure of the chiral self-assembling peptide (CSAP) hydrogel were examined using advanced imaging techniques, including atomic force microscopy, transmission electron microscopy, and cryo-scanning electron microscopy. The biocompatibility of the CSAP hydrogel was assessed through optical microscopy and fluorescent staining. Exosomes were isolated via ultrafiltration, and their quality was evaluated using Western blot analysis, nanoparticle tracking analysis, and transmission electron microscopy. The controlled release effect of the CSAP hydrogel on exosomes was quantitatively analyzed using laser confocal microscopy and a BCA assay kit. The results revealed that the self-assembling peptide R-LIFE-1 exhibited spontaneous assembly in the presence of various ions, leading to the formation of nanofibers. These nanofibers were cross-linked, giving rise to a robust nanofiber network structure, which further underwent cross-linking to generate a laminated membrane structure. The nanofibers possessed a large surface area, allowing them to encapsulate a substantial number of water molecules, thereby forming a hydrogel material with high water content. This hydrogel served as a stable spatial scaffold and loading matrix for the three-dimensional culture of cells, as well as the encapsulation and controlled release of exosomes. Importantly, R-LIFE-1 demonstrated excellent biocompatibility, preserving the growth of cells and the biological activity of exosomes. It rapidly formed a three-dimensional network scaffold, enabling the stable loading of cells and exosomes, while exhibiting favorable biocompatibility and reduced cytotoxicity. In conclusion, the findings of this study support the notion that R-LIFE-1 holds significant promise as an ideal tissue engineering material for tissue repair applications.


Assuntos
Exossomos , Preparações de Ação Retardada , Hidrogéis , Microscopia Eletrônica de Varredura , Peptídeos
7.
Sci Total Environ ; 892: 164451, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257600

RESUMO

Incineration is currently the most common method of treating municipal solid waste. Municipal solid waste incineration fly ash (MSWI FA) contains a high concentration of toxic heavy metals (HMs), making it a hazardous waste. A series of detoxification treatments are required to reduce the toxicity of fly ash. Furthermore, the environmental risk of MSWI FA after treatment is becoming a cause of concern. This paper reviews the primary ash properties, pH, liquid-solid ratio, and other factors (microorganism, type of leaching agents, etc.) that affect the leaching of HMs from MSWI FA, compares and summarizes the most widely applied solidification/stabilization (S/S) techniques. In particular, models and methods for the environmental risk assessment and prediction of HMs are classified and described in detail. Finally, the inadequacy of current S/S techniques for MSWI FA is pointed out, which may be useful for upcoming studies on this topic.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Incineração , Cinza de Carvão/química , Material Particulado , Carbono , Metais Pesados/análise , Medição de Risco
8.
Gels ; 9(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37102877

RESUMO

An important clinical challenge is improving the healing rate of diabetic chronic wounds, and developing new approaches that can promote chronic wound healing is essential. A new biomaterial that has demonstrated great potential for tissue regeneration and repair is self-assembling peptides (SAPs); however, they have been less studied for the treatment of diabetic wounds. Here, we explored the role of an SAP, SCIBIOIII, with a special nanofibrous structure mimicking the natural extracellular matrix for chronic diabetic wound repair. The results showed that the SCIBIOIII hydrogel in vitro has good biocompatibility and can create a three-dimensional (3D) culture microenvironment for the continuous growth of skin cells in a spherical state. The SCIBIOIII hydrogel in diabetic mice (in vivo) significantly improved wound closure, collagen deposition, and tissue remodeling and enhanced chronic wound angiogenesis. Thus, the SCIBIOIII hydrogel is a promising advanced biomaterial for 3D cell culture and diabetic wound tissue repair.

9.
Gels ; 8(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547294

RESUMO

Patient-derived organoid (PDO) models have been widely used in precision medicine. The inability to standardize organoid creation in pre-clinical models has become apparent. The common mouse-derived extracellular matrix can no longer meet the requirements for the establishment of PDO models. Therefore, in order to develop effective methods for 3D cultures of organoids, we designed a self-assembling peptide, namely DRF3, which can be self-assembled into ordered fibrous scaffold structures. Here, we used the co-assembly of self-assembling peptide (SAP) and collagen type I, fibronectin, and laminin (SAP-Matrix) to co-simulate the extracellular matrix, which significantly reduced the culture time of PDO, improved the culture efficiency, and increased the self-assembly ability of cells. Compared with the results from the 2D cell line, the PDO showed a more significant expression of cancer-related genes. During organoid self-assembly, the expression of cancer-related genes is increased. These findings provide a theoretical basis for the establishment of precision molecular modeling platforms in the future.

10.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056735

RESUMO

Self-assembly peptide nanotechnology has attracted much attention due to its regular and orderly structure and diverse functions. Most of the existing self-assembly peptides can form aggregates with specific structures only under specific conditions and their assembly time is relatively long. They have good biocompatibility but no immunogenicity. To optimize it, a self-assembly peptide named DRF3 was designed. It contains a hydrophilic and hydrophobic surface, using two N-terminal arginines, leucine, and two c-terminal aspartate and glutamic acid. Meanwhile, the c-terminal of the peptide was amidated, so that peptide segments were interconnected to increase diversity. Its characterization, biocompatibility, controlled release effect on antigen, immune cell recruitment ability, and antitumor properties were examined here. Congo red/aniline blue staining revealed that peptide hydrogel DRF3 could be immediately gelled in PBS. The stable ß-sheet secondary structure of DRF3 was confirmed by circular dichroism spectrum and IR spectra. The observation results of cryo-scanning electron microscopy, transmission electron microscopy, and atomic force microscopy demonstrated that DRF3 formed nanotubule-like and vesicular structures in PBS, and these structures interlaced with each other to form ordered three-dimensional nanofiber structures. Meanwhile, DRF3 showed excellent biocompatibility, could sustainably and slowly release antigens, recruit dendritic cells and promote the maturation of dendritic cells (DCs) in vitro. In addition, DRF3 has a strong inhibitory effect on clear renal cell carcinoma (786-0). These results provide a reliable basis for the application of peptide hydrogels in biomedical and preclinical trials.


Assuntos
Células Dendríticas/imunologia , Hidrogéis/química , Peptídeos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Vermelho Congo/química , Microscopia Crioeletrônica , Preparações de Ação Retardada , Fluoresceína-5-Isotiocianato/química , Humanos , Hidrogéis/farmacocinética , Espectrometria de Massas , Camundongos , Microscopia de Força Atômica , Nanofibras/química , Peptídeos/farmacocinética , Peptídeos/farmacologia , Estrutura Secundária de Proteína
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(1): 54-59, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35078576

RESUMO

Objective To investigate the effect of chiral self-assembled peptides SciobioII and Sciobio IV on the repair of anterior cruciate ligament injury. Methods The structure of the self-assembled peptides SciobioII and Sciobio IV was analyzed by circular dichroism, transmission electron microscopy, and aniline blue staining; the activity and morphology of human ligament fibroblasts (HLF) in 3D cell culture matrix were detected by acridine orange/ethidium bromide (AO/EB) staining and FITC-phalloidin staining. The rabbit model of anterior cruciate ligament injuries was established and the effects of self-assembled peptides on the ligament repair were analyzed by HE staining and immunohistochemistry. Results The self-assembled peptides SciobioII and Sciobio IV formed a stable ß-sheet after self-assembling in PBS for 24 hours, and futher constructed a nanofiber network structure, which was suitable for 3D cell culture. Human ligament fibroblasts maintained a round shape and grew vigorously in the 3D cell culture media constructed by self-assembled peptides. Animal experiments showed that the self-assembled peptide SciobioII promoted the repair rate of anterior cruciate ligament injury in rabbit. Conclusion Chiral self-assembled peptides Sciobio II and Sciobio IV can be used for 3D cell culture and repair of anterior cruciate ligament injury in rabbit.


Assuntos
Lesões do Ligamento Cruzado Anterior , Animais , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia , Técnicas de Cultura de Células em Três Dimensões , Fibroblastos , Peptídeos , Coelhos
12.
J Org Chem ; 86(8): 5983-5990, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33797908

RESUMO

A convergent paired electrolysis catalyzed by a B12 complex for the one-pot synthesis of a tertiary amide from organic trichlorides (R-CCl3) has been developed. Various readily available organic trichlorides, such as benzotrichloride and its derivatives, chloroform, dichlorodiphenyltrichloroethane (DDT), trichloro-2,2,2-trifluoroethane (CFC-113a), and trichloroacetonitrile (CNCCl3), were converted to amides in the presence of tertiary amines through oxygen incorporation from air at room temperature. The amide formation mechanism in the paired electrolysis, which was mediated by a cobalt complex, was proposed.

14.
NPJ Regen Med ; 6(1): 9, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597509

RESUMO

Well-defined scaffold hydrogels made of self-assembling peptides have found their way into clinical products. By examining the properties and applications of two self-assembling peptides-EAK16 and RADA16-we highlight the potential for translating designer biological scaffolds into commercial products.

15.
Chem Rev ; 120(24): 13434-13460, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33216525

RESUMO

Short peptides are ubiquitous in nature. They are found as hormones, pheromones, antibacterial and antifungal agents in innate immunity systems, toxins, and pesticides. But no one seriously considered that peptides could be useful as scaffold hydrogel materials. There has been a significant change since 1990 after the discovery of an ionic self-complementary peptide as a very interesting repeating segment in a yeast protein. It is now recognized that self-assembling peptides made from 20 natural amino acids have real material properties. Currently, many diverse applications have been developed from these simple and designer self-assembling peptide scaffold hydrogels and are commercially available. Examples include: (1) real 3D tissue cell cultures of diverse tissue cells and various stem cells, (2) reparative and regenerative medicine as well as tissue engineering, (3) 3D tissue printing, (4) sustained releases of small molecules, growth factors, and monoclonal antibodies, and (5) accelerated wound healings of skin and diabetic ulcers as well as instant hemostatic applications in surgery. Self-assembling peptide nanobiotechnology will likely continue to expand in many directions in the coming years.


Assuntos
Hidrogéis/química , Oligopeptídeos/química , Animais , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Humanos , Nanofibras/química , Impressão Tridimensional , Engenharia Tecidual
16.
Nanoscale Res Lett ; 15(1): 21, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31993836

RESUMO

Designing appropriate methods to effectively enhance nitrogen-doping efficiency and active-site density is essential to boost the oxygen reduction reaction (ORR) activity of non-platinum Fe/N/C-type electrocatalysts. Here, we propose a facile and effective strategy to design a mesopore-structured Fe/N/C catalyst for the ORR with ultrahigh BET surface area and outstanding conductivity via nanochannels of molecular sieve-confined pyrolysis of Fe2+ ions coordinated with 2,4,6-tri(2-pyridyl)-1,3,5-triazine complexes as a novel precursor with the stable coordination effect. Combining the nanochannel-confined effect with the stable coordination effect can synergistically improve the thermal stability and stabilize the nitrogen-enriched active sites, and help to control the loss of active N atoms during pyrolysis process and to further obtain a high active-site density for enhancing the ORR activity. The as-prepared Fe/N/C electrocatalyst has exhibited excellent catalytic activity with an onset potential of ~ 0.841 V (versus RHE) closely approaching the Pt/C catalyst and high long-term stability in alkaline electrolyte. Besides, low-hydrogen peroxide yield (< 6.5%) and high electron transfer number (3.88-3.94) can be found on this catalyst, indicating that it is a valuable substitute for traditional Pt/C catalysts. This work paves a new way to design high-performance Fe/N/C electrocatalysts and deepens the understanding of active site and ORR catalysis mechanism.

17.
Sheng Wu Gong Cheng Xue Bao ; 35(6): 1079-1087, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232004

RESUMO

Here we investigate the physical and chemical properties of chiral self-assembling peptides and the role of uterine trauma regeneration. The circular dichroism was used to analyze secondary structure of chiral self-assembled peptide, and Congo red staining was used to observe the macroscopic process of peptide self-assembling. Erythrocyte lysis assay was used to examine the cleavage of peptide on cell membrane. The nanofiber scaffolds self-assembled by Chiral self-assembling peptides were used as the three-dimensional culture material to observe the growth effect of Hela cell. CCK-8 (cell counting kit-8) was used to study cell viability level between 2D (2-dimensional) and 3D (3-dimensional) culture environment. Rats endometrium curettage model was founded to evaluate the changes by immunohistochemistry staining and and HE staining. The secondary structure of chiral self-assembling peptides was stable ß-sheet, and peptide could form dense membrane structure after 24 hours self-assembling cultured in salt ions. There was no harmful for the cell membrane of the peptide before and after self-assembling. Animal experiments show that chiral self-assembling peptide can significantly reduce the inflammatory response, promote the production of neovascularization, and accelerate the repair process. Chiral self-assembling peptide, as a new type of scaffold material, can construct a three-dimensional cell culture environment and used to repair uterine trauma.


Assuntos
Endométrio , Nanofibras , Animais , Feminino , Células HeLa , Humanos , Peptídeos , Ratos , Regeneração
18.
Nanoscale Res Lett ; 14(1): 22, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30645714

RESUMO

Synthesis of metal-free carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace the conventional platinum-based catalysts has currently become a hot topic of research. This work proposes an activation-assisted carbonization strategy for the fabrication of nitrogen-doped nanoporous carbon microfibers (Me-CFZ-900) with a high BET surface area (~ 929.4 m2 g-1) via using melamine as a promoter/nitrogen source and bamboo-carbon biowastes as the carbon source with the help of a zinc chloride activator. Electrochemical tests showed that the Me-CFZ-900 material has exhibited excellent ORR electrocatalytic activity and long-term stability, and also displayed a quasi-four-electron ORR pathway in alkaline electrolyte. We also find that the graphitic-N may be the catalytically active site for the ORR, but the formation of planar-N can further help to promote the ORR activity for our catalysts. The results open a new space and provide a new idea to prepare valuable porous nanocarbon materials on the basis of carbonaceous solid wastes for catalysis of a wide range of electrochemical reactions in the future.

19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(3): 388-393, 2017 Jun 01.
Artigo em Chinês | MEDLINE | ID: mdl-29745504

RESUMO

The purpose of this study is to investigate the effects of self-assembling peptide GFS-4 on three-dimen-sional myocardial cell culture and tissue repair of myocardial infarction. The circular dichroism (CD) spectrum was used to detect secondary structure of GFS-4, and atomic force microscope (AFM) was used to analyze the microstructure of self-assembly. The nanofiber scaffolds self-assembled by GFS-4 were used as the three-dimensional culture material to observe the growth effect of cardiomyocytes. The model of myocardial infarction was established and the effect of GFS-4 on myocardial infarction was studied. The results indicated that self-assembling peptide GFS-4 could form mainly ß-sheet structure that can form dense nanofiber scaffolds after 24 hours' self-assembling. The myocardial cells had a favorable growth status in GFS-4 nanofiber scaffold hydrogel when cells treated in three-dimen-sional cell culture. The experiment of repairing myocardial infarction in vitro proved that peptide GFS-4 hydrogel scaffold could alleviate tissue necrosis in a myocardial infarction area. As a new nanofiber scaffold material, self-assembling peptide GFS-4 can be used for three-dimensional cell culture and tissue repairing in myocardial infarction area.

20.
J Matern Fetal Neonatal Med ; 30(3): 357-367, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27033234

RESUMO

OBJECTIVES: To examine the association between small for gestational age (SGA) and inadequate gestational weight gain (GWG) in obese women (compared with Institute of Medicine [IOM] guidelines) stratified by obesity classes. METHODS: We conducted a meta-analysis of original researches with sufficient information about inadequate GWG in obese women stratified by obesity classes. SGA as the chief outcome was extracted and assessed in our analysis. MEDLINE and EMBASE were searched through Ovid from 28 May 2009 to 1 December 2015. Quality was assessed using a modified Newcastle-Ottawa scale. RESULTS: 480 citations were screened and 13 studies (437 512 obese women) were included. Obese women who gained weight below the guidelines had higher risks of SGA than those who gained weight within the guidelines (OR 1.28; 95% CI 1.14-1.43). The same conclusions were also confirmed in Class I, Class II and Class III of obese women: Class I (OR 1.37; 95% CI 1.22-1.54); Class II (OR 1.38; 95% CI 1.24-1.54); Class III (OR 1.25; 95% CI 1.14-1.36). CONCLUSIONS: From our analysis, the guidelines of IOM can be applied to all the classes of obesity. More accurate boundaries for each obesity class should be established to evaluate the maternal and fetal risks. Diverse populations are thus necessary for more studies in the future.


Assuntos
Recém-Nascido Pequeno para a Idade Gestacional , Obesidade/fisiopatologia , Complicações na Gravidez/fisiopatologia , Aumento de Peso , Feminino , Humanos , Modelos Estatísticos , Guias de Prática Clínica como Assunto , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...