Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106911, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832223

RESUMO

Drug-resistant bacterium infections are a severe threat to public health and novel antimicrobial agents combating drug-resistant bacteria are an unmet medical need. Although cannabidiol (CBD) has been reported to show antibacterial effects, whether its antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) can be improved remains unclear. Herein, a series of novel CBD derivatives were designed and synthesized using various chemical approaches including amidation, Friedel-Crafts alkylation, and Negishi cross-coupling reaction for the modifications at the C-7, C-2', C-4', and C-6' positions of CBD skeleton. Derivative 21f showed augmented antibacterial activity against MRSA with a minimum inhibitory concentration of 4 µM without cytotoxic effect in microglia BV2 cells. Further mechanistic studies suggested that 21f inhibited the formation of biofilms, induced excess reactive oxygen species, and reduced bacterial metabolism, which collectively led to the acceleration of bacterial death. Findings from this study expand the understanding of CBD derivatives as promising antibacterial agents, which provides useful information for the development of cannabinoid-based antibacterial agents.


Assuntos
Canabidiol , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Canabidiol/farmacologia , Testes de Sensibilidade Microbiana , Bactérias
2.
Chemosphere ; 343: 140267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758090

RESUMO

Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.


Assuntos
Fosfatos , Poluentes Químicos da Água , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Compostos Organofosforados/toxicidade , Oxirredução , Eletrodos
3.
Front Chem ; 10: 892554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601554

RESUMO

We previously reported that the structural modifications of pentacyclic triterpenoids including oleanolic acid resulted in enhanced hyaluronidase inhibitory activity but whether this applies to other pentacyclic triterpenoids such as betulinic acid (BA) is unknown. Herein, we synthesized BA derivatives with an α,ß-unsaturated ketene moiety and evaluated for their: 1) hyaluronidase inhibitory activity and, 2) anti-inflammatory effects against lipopolysaccharides (LPS) induced inflammation. Compared to BA, the BA derivatives exerted improved anti-hyaluronidase activity (26.3%-72.8% vs. 22.6%) and anti-inflammatory effects by reducing nitrite production in BV2 cells (3.9%-46.8% vs. 3.4%) and RAW264.7 cells (22.7%-49.2% vs. 20.4%). BA derivatives inhibited LPS-induced production of pro-inflammatory cytokines in THP-1 cells (15.2%-22.4%). BA derivatives also exerted promising anti-inflammatory effects against hyaluronic acid fragment induced nitrite production (8.6%-35.6%) in THP-1 cells. BA derivatives showed augmented anti-hyaluronidase and anti-inflammatory effects but further biological evaluations using in vivo models are warranted to confirm their efficacy.

4.
J Enzyme Inhib Med Chem ; 36(1): 1665-1678, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309457

RESUMO

Oleanolic acid (OA) is a natural cosmeceutical compound with various skin beneficial activities including inhibitory effect on hyaluronidase but the anti-hyaluronidase activity and mechanisms of action of its synthetic analogues remain unclear. Herein, a series of OA derivatives were synthesised and evaluated for their inhibitory effects on hyaluronidase. Compared to OA, an induction of fluorinated (6c) and chlorinated (6g) indole moieties led to enhanced anti-hyaluronidase activity (IC50 = 80.3 vs. 9.97 and 9.57 µg/mL, respectively). Furthermore, spectroscopic and computational studies revealed that 6c and 6g can bind to hyaluronidase protein and alter its secondary structure leading to reduced enzyme activity. In addition, OA indole derivatives showed feasible skin permeability in a slightly acidic environment (pH = 6.5) and 6c exerted skin protective effect by reducing cellular reactive oxygen species in human skin keratinocytes. Findings from the current study support that OA indole derivatives are potential cosmeceuticals with anti-hyaluronidase activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Hialuronoglucosaminidase/antagonistas & inibidores , Indóis/farmacologia , Ácido Oleanólico/farmacologia , Pele/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Hialuronoglucosaminidase/metabolismo , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Oleanólico/síntese química , Ácido Oleanólico/química , Permeabilidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Chem ; 109: 104692, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626454

RESUMO

A series of ursolic acid (UA), oleanolic acid (OA) and 18ß-glycyrrhetinic acid (GA) derivatives were synthesized by introducing a range of substituted aromatic side-chains at the C-2 position after the hydroxyl group at C-3 position was oxidized. Their antibacterial activities were evaluated in vitro against a panel of four Staphylococcus spp. The results revealed that the introduction of aromatic side-chains at the C-2 position of GA led to the discovery of potent triterpenoid derivatives for inhibition of both drug sensitive and resistant S. aureus, while the other two series derivatives of UA and OA showed no significant antibacterial activity even at high concentrations. In particular, GA derivative 33 showed good potency against all four Staphylococcus spp. (MIC = 1.25-5 µmol/L) with acceptable pharmacokinetics properties and low cytotoxicity in vitro. Molecular docking was also performed using S. aureus DNA gyrase to rationalize the observed antibacterial activity. This series of GA derivatives has strong potential for the development of a new type of triterpenoid antibacterial agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Animais , Antibacterianos/síntese química , Linhagem Celular , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microglia , Modelos Moleculares , Estrutura Molecular , Triterpenos Pentacíclicos/síntese química , Ratos , Staphylococcus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...