Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
FASEB J ; 38(13): e23749, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953707

RESUMO

Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.


Assuntos
Bleomicina , Catequina , Senescência Celular , Camundongos Endogâmicos C57BL , Miofibroblastos , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Camundongos , Senescência Celular/efeitos dos fármacos , Catequina/farmacologia , Catequina/análogos & derivados , Proantocianidinas/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Biflavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Colloids Surf B Biointerfaces ; 242: 114076, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39003848

RESUMO

Hollow CuS nanoparticles can achieve photothermal and photodynamic therapy (PDT) in tumor treatment. However, excessive GSH in the tumor cells will consume the reactive oxygen species produced by PDT and reduce the PDT effect. Cisplatin is a broad-spectrum antineoplastic drug that can be used in a variety of tumor treatments. However, cisplatin is cytotoxic to normal cells while it kills tumor cells. Therefore, we construct Pt(IV) complexes loaded hollow CuS nanoparticles to attenuate the toxicity of cisplatin and enhance the PDT effect of the hollow CuS nanoparticles. The nanoparticles were proved to be able to accumulate around the tumor site through the enhanced permeability and retention (EPR) effect to achieve a synergistic chemo/photothermal/photodynamic therapy.

3.
Antioxidants (Basel) ; 13(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38929114

RESUMO

Idiopathic pulmonary fibrosis is a fatal interstitial lung disease for which effective drug therapies are lacking. Senegenin, an effective active compound from the traditional Chinese herb Polygala tenuifolia Willd, has been shown to have a wide range of pharmacological effects. In this study, we investigated the therapeutic effects of senegenin on pulmonary fibrosis and their associated mechanisms of action. We found that senegenin inhibited the senescence of epithelial cells and thus exerted anti-pulmonary-fibrosis effects by inhibiting oxidative stress. In addition, we found that senegenin promoted the expression of Sirt1 and Pgc-1α and that the antioxidative and antisenescent effects of senegenin were suppressed by specific silencing of the Sirt1 and Pgc-1α genes, respectively. Moreover, the senegenin-induced effects of antioxidation, antisenescence of epithelial cells, and antifibrosis were inhibited by treatment with Sirt1 inhibitors in vivo. Thus, the Sirt1/Pgc-1α pathway exerts its antifibrotic effect on lung fibrosis by mediating the antioxidative and antisenescent effects of senegenin.

4.
Aging Cell ; : e14229, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831635

RESUMO

Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.

6.
Theranostics ; 14(7): 2687-2705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773980

RESUMO

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Assuntos
Células Epiteliais Alveolares , Bleomicina , Modelos Animais de Doenças , Ferro , Mitocôndrias , Fibrose Pulmonar , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Camundongos , Ferro/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino
7.
Adv Physiol Educ ; 48(3): 446-454, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602011

RESUMO

This study aimed to compare the impact of the partially flipped physiology classroom (PFC) and the traditional lecture-based classroom (TLC) on students' learning approaches. The study was conducted over 5 mo at Xiangya School of Medicine from February to July 2022 and comprised 71 students majoring in clinical medicine. The experimental group (n = 32) received PFC teaching, whereas the control group (n = 39) received TLC. The Revised Two-Factor Study Process Questionnaire (R-SPQ-2F) was used to assess the impact of different teaching methods on students' learning approaches. After the PFC, students got significantly higher scores on deep learning approach (Z = -3.133, P < 0.05). Conversely, after the TLC students showed significantly higher scores on surface learning approach (Z = -2.259, P < 0.05). After the course, students in the PFC group scored significantly higher in deep learning strategy than those in the TLC group (Z = -2.196, P < 0.05). The PFC model had a positive impact on deep learning motive and strategy, leading to an improvement in the deep approach, which is beneficial for the long-term development of students. In contrast, the TLC model only improved the surface learning approach. The study implies that educators should consider implementing PFC to enhance students' learning approaches.NEW & NOTEWORTHY In this article, we compare the impact of the partially flipped classroom (PFC) and the traditional lecture classroom (TLC) in a physiology course on medical students' learning approaches. We found that the PFC benefited students by significantly enhancing their deep learning motive, strategy, and approach, which was good for them. However, the TLC model only improved the surface learning motive and approach.


Assuntos
Aprendizado Profundo , Fisiologia , Estudantes de Medicina , Humanos , Fisiologia/educação , Masculino , Feminino , Educação de Graduação em Medicina/métodos , Avaliação Educacional , Currículo , Inquéritos e Questionários
8.
Chin Med ; 19(1): 60, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589903

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS: A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-ß to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-ß with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS: In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION: The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.

9.
J Cancer Res Clin Oncol ; 150(3): 145, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507110

RESUMO

OBJECTIVE: To investigate the superiority of preoperative ultrasound-guided titanium clip and nanocarbon dual localization over traditional methods for determining the surgical approach and guiding resection of Siewert type II adenocarcinoma of the esophagogastric junction (AEG). METHOD: This study included 66 patients with Siewert type II AEG who were treated at the PLA Joint Logistics Support Force 900th Hospital between September 1, 2021, and September 1, 2023. They were randomly divided into an experimental group (n = 33), in which resection was guided by the dual localization technique, and the routine group (n = 33), in which the localization technique was not used. Surgical approach predictions, proximal esophageal resection lengths, pathological features, and the occurrence of complications were compared between the groups. RESULT: The use of the dual localization technique resulted in higher accuracy in predicting the surgical approach (96.8% vs. 75.9%, P = 0.02) and shorter proximal esophageal resection lengths (2.39 ± 0.28 cm vs. 2.86 ± 0.39 cm, P < 0.001) in the experimental group as compared to the routine group, while there was no significant difference in the incidence of postoperative complications (22.59% vs. 24.14%, P = 0.88). CONCLUSION: Preoperative dual localization with titanium clips and carbon nanoparticles is significantly superior to traditional methods and can reliably delineate the actual infiltration boundaries of Siewert type II AEG, guide the surgical approach, and avoid excessive esophageal resection.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Nanopartículas , Neoplasias Gástricas , Humanos , Titânio , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Gastrectomia/métodos , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia , Adenocarcinoma/patologia , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/diagnóstico por imagem , Junção Esofagogástrica/cirurgia , Junção Esofagogástrica/patologia , Instrumentos Cirúrgicos , Ultrassonografia de Intervenção , Carbono
10.
BMC Pharmacol Toxicol ; 25(1): 18, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355586

RESUMO

BACKGROUND: Pulmonary fibrosis is a chronic progressive disease with complex pathogenesis, short median survival time, and high mortality. There are few effective drugs approved for pulmonary fibrosis treatment. This study aimed to evaluate the effect of praziquantel (PZQ) on bleomycin (BLM)-induced pulmonary fibrosis. METHODS: In this study, we investigated the role and mechanisms of PZQ in pulmonary fibrosis in a murine model induced by BLM. Parameters investigated included survival rate, lung histopathology, pulmonary collagen deposition, mRNA expression of key genes involved in pulmonary fibrosis pathogenesis, the activity of fibroblast, and M2/M1 macrophage ratio. RESULTS: We found that PZQ improved the survival rate of mice and reduced the body weight loss induced by BLM. Histological examination showed that PZQ significantly inhibited the infiltration of inflammatory cells, collagen deposition, and hydroxyproline content in BLM-induced mice. Besides, PZQ reduced the expression of TGF-ß and MMP-12 in vivo and inhibited the proliferation of fibroblast induced by TGF-ß in vitro. Furthermore, PZQ affected the balance of M2/M1 macrophages. CONCLUSIONS: Our study demonstrated that PZQ could ameliorate BLM-induced pulmonary fibrosis in mice by affecting the balance of M2/M1 macrophages and suppressing the expression of TGF-ß and MMP-12. These findings suggest that PZQ may act as an effective anti-fibrotic agent for preventing the progression of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Bleomicina/toxicidade , Praziquantel/uso terapêutico , Metaloproteinase 12 da Matriz/farmacologia , Metaloproteinase 12 da Matriz/uso terapêutico , Pulmão , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Camundongos Endogâmicos C57BL
11.
Heliyon ; 10(1): e23723, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38205313

RESUMO

N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation mediates glutamate (Glu) toxicity and involves bleomycin (BLM)-induced acute lung injury (ALI). We have reported that bone marrow-derived mesenchymal stem cells (BM-MSCs) are NMDAR-regulated target cells, and NMDAR activation inhibits the protective effect of BM-MSCs on BLM-induced pulmonary fibrosis, but its effect on ALI remains unknown. Here, we found that Glu release was significantly elevated in plasma of mice at d 7 after intratracheally injected with BLM. BM-MSCs were pretreated with NMDA (the selective agonist of NMDAR) and transplanted into the recipient mice after the BLM challenge. BM-MSCs administration significantly alleviated the pathological changes, inflammatory response, myeloperoxidase activity, and malondialdehyde content in the damaged lungs, but NMDA-pretreated BM-MSCs did not ameliorate BLM-induced lung injury in vivo. Moreover, NMDA down-regulated prostaglandin E2 (PGE2) secretion and cyclooxygenase (COX)-2 expression instead of COX-1 expression in BM-MSCs in vitro. We also found that NMDAR1 expression was increased and COX-2 expression was decreased, but COX-1 expression was not changed in primary BM-MSCs of BLM-induced ALI mice. Further, the cultured supernatants of lipopolysaccharide (LPS)-pretreated RAW264.7 macrophages were collected to detect inflammatory factors after co-culture with NMDA-pretreated BM-MSCs. The co-culture experiments showed that NMDA precondition inhibited the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation, and PGE2 could partially alleviate this inhibition. Our findings suggest that NMDAR activation attenuated the protective effect of BM-MSCs on BLM-induced ALI in vivo. NMDAR activation inhibited COX-2 expression and PGE2 secretion in BM-MSCs and weakened the anti-inflammatory effect of BM-MSCs on LPS-induced macrophage inflammation in vitro. In conclusion, NMDAR activation attenuates the protective effect of BM-MSCs on BLM-induced ALI via the COX-2/PGE2 pathway. Keywords: Acute Lung Injury, BM-MSCs, NMDA receptor, COX-1/2, PGE2.

12.
Int J Biochem Cell Biol ; 169: 106530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246263

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS. Sulfasalazine (SASP) has antibacterial and anti-inflammatory effects and is used for treating inflammatory bowel and rheumatic diseases. However, the effect of SASP on LPS-induced ALI in mice has not yet been reported. Therefore, we aimed to investigate the effect of SASP on LPS-induced ALI in mice. Mice were intraperitoneally injected with SASP 2 h before or 4 h after LPS modeling. Pulmonary pathological damage was measured based on inflammatory factor expression (malondialdehyde and superoxide dismutase levels) in the lung tissue homogenate and alveolar lavage fluid. The production of inflammatory cytokines and occurrence of oxidative stress in the lungs induced by LPS were significantly mitigated after the prophylactic and long-term therapeutic administration of SASP, which ameliorated ALI caused by LPS. SASP reduced both the production of inflammatory cytokines and occurrence of oxidative stress in RAW264.7 cells, which respond to LPS. Moreover, its mechanism contributed to the suppression of NF-κB and nuclear translocation. In summary, SASP treatment ameliorates LPS-induced ALI by mediating anti-inflammatory and antioxidant effects, which may be attributed to the inhibition of NF-κB activation and promotion of antioxidant defenses. Thus, SASP may be a promising pharmacologic agent for ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Sulfassalazina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
13.
Sci Rep ; 13(1): 14706, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679587

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease that lacks effective treatment modalities. Once patients are diagnosed with IPF, their median survival is approximately 3-5 years. PPARγ is an important target for the prevention and treatment of pulmonary fibrosis. Asarinin is a lignan compound that can be extracted from food plant Asarum heterotropoides. In this study, we investigated the therapeutic effects of asarinin in a pulmonary fibrosis model constructed using bleomycin in mice and explored the underlying mechanisms. Intraperitoneal administration of asarinin to mice with pulmonary fibrosis showed that asarinin effectively attenuated pulmonary fibrosis, and this effect was significantly inhibited by the PPARγ inhibitor GW9662. Asarinin inhibited TGF-ß1-induced fibroblast-to-myofibroblast transition in vitro, while GW9662 and PPARγ gene silencing significantly inhibited this effect. In addition, asarinin inhibited not only the canonical Smad pathway of TGF-ß but also the non-canonical AKT and MAPK pathways by activating PPARγ. Our study demonstrates that asarinin can be used as a therapeutic agent for pulmonary fibrosis, and that PPARγ is its key target.


Assuntos
Fibrose Pulmonar Idiopática , Lignanas , Animais , Camundongos , PPAR gama , Lignanas/farmacologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Bleomicina/efeitos adversos
14.
Hortic Res ; 10(9): uhad161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37727702

RESUMO

Soil salinity is a growing concern for global crop production and the sustainable development of humanity. Therefore, it is crucial to comprehend salt tolerance mechanisms and identify salt-tolerance genes to enhance crop tolerance to salt stress. Suaeda glauca, a halophyte species well adapted to the seawater environment, possesses a unique ability to absorb and retain high salt concentrations within its cells, particularly in its leaves, suggesting the presence of a distinct mechanism for salt tolerance. In this study, we performed de novo sequencing of the S. glauca genome. The genome has a size of 1.02 Gb (consisting of two sets of haplotypes) and contains 54 761 annotated genes, including alleles and repeats. Comparative genomic analysis revealed a strong synteny between the genomes of S. glauca and Beta vulgaris. Of the S. glauca genome, 70.56% comprises repeat sequences, with retroelements being the most abundant. Leveraging the allele-aware assembly of the S. glauca genome, we investigated genome-wide allele-specific expression in the analyzed samples. The results indicated that the diversity in promoter sequences might contribute to consistent allele-specific expression. Moreover, a systematic analysis of the ABCE gene families shed light on the formation of S. glauca's flower morphology, suggesting that dysfunction of A-class genes is responsible for the absence of petals in S. glauca. Gene family expansion analysis demonstrated significant enrichment of Gene Ontology (GO) terms associated with DNA repair, chromosome stability, DNA demethylation, cation binding, and red/far-red light signaling pathways in the co-expanded gene families of S. glauca and S. aralocaspica, in comparison with glycophytic species within the chenopodium family. Time-course transcriptome analysis under salt treatments revealed detailed responses of S. glauca to salt tolerance, and the enrichment of the transition-upregulated genes in the leaves associated with DNA repair and chromosome stability, lipid biosynthetic process, and isoprenoid metabolic process. Additionally, genome-wide analysis of transcription factors indicated a significant expansion of FAR1 gene family. However, further investigation is needed to determine the exact role of the FAR1 gene family in salt tolerance in S. glauca.

15.
Cell Mol Life Sci ; 80(10): 308, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768341

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by extensive extracellular matrix (ECM) deposition by activated myofibroblasts, which are specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. New insights on therapeutic strategies aimed at reversing fibrosis by targeting myofibroblast fate are showing promise in promoting fibrosis resolution. Previously, we showed that a novel adipocytokine, omentin-1, attenuated bleomycin (BLM)-induced lung fibrosis by reducing the number of myofibroblasts. Apoptosis, deactivation, and reprogramming of myofibroblasts are important processes in the resolution of fibrosis. Here we report that omentin-1 reverses established lung fibrosis by promoting mechanically activated myofibroblasts dedifferentiation into lipofibroblasts. Omentin-1 promotes myofibroblasts lipogenic differentiation by inhibiting dimerization and nuclear translocation of glycolytic enzymes pyruvate kinase isoform M2 (PKM2) and activation of the downstream Yes-associated protein (YAP) by increasing the cofactor fructose-1,6-bisphosphate (F1, 6BP, FBP). Moreover, omentin-1 activates proliferator-activated receptor gamma (PPARγ) signaling, the master regulator of lipogenesis, and promotes the upregulation of the lipogenic differentiation-related protein perilipin 2 (PLIN2) by suppressing the PKM2-YAP pathway. Ultimately, omentin-1 facilitates myofibroblasts transformation into the lipofibroblast phenotype, with reduced collagen synthesis and enhanced degradation properties, which are crucial mechanisms to clear the ECM deposition in fibrotic tissue, leading to fibrosis resolution. Our results indicate that omentin-1 targets mechanical signal accelerates fibrosis resolution and reverses established lung fibrosis by promoting myofibroblasts lipogenic differentiation, which is closely associated with ECM clearance in fibrotic tissue. These findings suggest that targeting mechanical force to promote myofibroblast lipogenic differentiation is a promising therapeutic strategy against persistent lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , PPAR gama , Humanos , PPAR gama/genética , Lipogênese , Fibroblastos , Diferenciação Celular
16.
BMC Med Educ ; 23(1): 557, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553632

RESUMO

BACKGROUND: Online education has become increasingly popular, but research on the effectiveness of different teaching models in developing cognitive skills is limited. This study investigated the relationship between different teaching models (online and offline) and the development of cognitive skills in clinical medicine students. METHODS: Survey data were collected from 2018 entry students who participated in online teaching and 2019 entry students in offline teaching at Xiangya School of Medicine, Central South University. National Quality Open Courses (NQROC) were provided to both groups of students. The study examined the total score of physiology final exam, score of each type of question, and NQROC learning engagement in different score segments under the two teaching models. Non-parametric statistical methods were utilized to analyze the total score of physiology final exam, score of each type of question, and the NQROC learning engagement. Spearman's rank correlation was utilized to analyze the relationship between the score of physiology final exam and the students' NQROC learning engagement. RESULTS: The study found no statistically significant difference in the total score, short-answer questions (SAQs) score, and case study questions (CSQs) score between online and offline teaching models. However, the multiple-choice questions (MCQs) score was higher in the online teaching model (Z=-4.249, P < 0.001), suggesting that online teaching may be an effective way to improve lower-order cognitive skills among students. In contrast, low-achieving students had higher total scores (Z=-3.223, P = 0.001) and scores in both MCQs (Z=-6.263, P < 0.001) and CSQs (Z=-6.877, P < 0.001) in the online teaching model. High-achieving students in the online teaching model had higher total scores (Z=-3.001, P = 0.003) and MCQs scores (Z=-5.706, P < 0.001) but lower scores in CSQs (Z=-2.775, P = 0.006). Furthermore, students' NQROC learning engagement was greater in the online teaching model. CONCLUSIONS: The results of this study suggested that online teaching was not statistically significantly different from offline in cognitive domains and was more desirable than offline in strengthening lower-order cognitive skills. However, it was important to note that offline teaching may be more effective in reinforcing higher-order cognitive skills among high-achieving students. In conclusion, this study provided important insights into the effectiveness of different teaching models in developing cognitive skills among medical students and highlighted the potential benefits of online teaching in enhancing students' lower-order cognitive skills.


Assuntos
Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Estudantes de Medicina/psicologia , Aprendizagem , Avaliação Educacional/métodos , Educação de Graduação em Medicina/métodos , Cognição
17.
PLoS One ; 18(8): e0289530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556489

RESUMO

BACKGROUND: Studies have shown that the release of endogenous glutamate (Glu) participates in lung injury by activating N-methyl-D-aspartate receptor (NMDAR), but the mechanism is still unclear. This study was to investigate the effects and related mechanisms of Glu on the lipid synthesis of pulmonary surfactant (PS) in isolated rat lung tissues. METHODS: The cultured lung tissues of adult SD rats were treated with Glu. The amount of [3H]-choline incorporation into phosphatidylcholine (PC) was detected. RT-PCR and Western blot were used to detect the changes of mRNA and protein expression of cytidine triphosphate: phosphocholine cytidylyltransferase alpha (CCTα), a key regulatory enzyme in PC biosynthesis. Western blot was used to detect the expression of NMDAR1, which is a functional subunit of NMDAR. Specific protein 1 (Sp1) expression plasmids were used. After transfected with Sp1 expression plasmids, the mRNA and protein levels of CCTα were detected by RT-PCR and Western blot in A549 cells. After treated with NMDA and MK-801, the mRNA and protein levels of Sp1 were detected by RT-PCR and Western blot in A549 cells. RESULTS: Glu decreased the incorporation of [3H]-choline into PC in a concentration- and time- dependent manner. Glu treatment significantly reduced the mRNA and protein levels of CCTα in lungs. Glu treatment up-regulated NMDAR1 protein expression, and the NMDAR blocker MK-801 could partially reverse the reduction of [3H]-choline incorporation induced by Glu (10-4 mol/L) in lungs. After transfected with Sp1 plasmid for 30 h, the mRNA and protein expression levels of CCTα were increased and the protein expression of Sp1 was also up-regulated. After A549 cells were treated with NMDA, the level of Sp1 mRNA did not change significantly, but the expression of nucleus protein in Sp1 was significantly decreased, while the expression of cytoplasmic protein was significantly increased. However, MK-801could reverse these changes. CONCLUSIONS: Glu reduced the biosynthesis of the main lipid PC in PS and inhibited CCTα expression by activating NMDAR, which were mediated by the inhibition of the nuclear translocation of Sp1 and the promoter activity of CCTα. In conclusion, NMDAR-mediated Glu toxicity leading to impaired PS synthesis may be a potential pathogenesis of lung injury.


Assuntos
Lesão Pulmonar , Surfactantes Pulmonares , Fator de Transcrição Sp1 , Animais , Ratos , Colina/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Maleato de Dizocilpina , Ácido Glutâmico , N-Metilaspartato , Fosfatidilcolinas , Surfactantes Pulmonares/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo
18.
Curr Med Sci ; 43(4): 741-748, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37455278

RESUMO

OBJECTIVE: The integration of training in theory and practice across the medical education spectrum is being encouraged to increase student understanding and skills in the sciences. This study aimed to determine the deciding factors that drive students' perceived advantages in class to improve precision education and the teaching model. METHODS: A mixed strategy of an existing flipped classroom (FC) and a case-based learning (CBL) model was conducted in a medical morphology curriculum for 575 postgraduate students. The subjective learning evaluation of the individuals (learning time, engagement, study interest and concentration, and professional integration) was collected and analyzed after FC-CBL model learning. RESULTS: The results from the general evaluation showed promising results of the medical morphology in the FC-CBL model. Students felt more engaged by instructors in person and benefited in terms of time-saving, flexible arrangements, and professional improvement. Our study contributed to the FC-CBL model in Research Design in postgraduate training in 4 categories: 1) advancing a guideline of precision teaching according to individual characteristics; 2) revealing whether a learning background is needed for a Research Design course to guide setting up a preliminary course; 3) understanding the perceived advantages and their interfaces; and 4) barriers and/or improvement to implement the FC-CBL model in the Research Design class, such as a richer description of e-learning and hands-on practice. CONCLUSION: Undertaking a FC-CBL combined model could be a useful addition to pedagogy for medical morphology learning in postgraduate training.


Assuntos
Currículo , Educação Médica , Humanos , Aprendizagem
19.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119535, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451346

RESUMO

Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.


Assuntos
Ferroptose , Fibrose Pulmonar , Camundongos , Humanos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Ferroptose/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Pulmão/metabolismo , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Ferro/metabolismo
20.
Adv Physiol Educ ; 47(3): 538-547, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289950

RESUMO

The online flipped classroom (OFC) has emerged as a new teaching method in universities worldwide, which combines asynchronous and synchronous online learning. OFC differs from the traditional flipped classroom as it does not involve face-to-face interaction between teachers and students. Instead, the class meeting is conducted online, and it is focused on active and collaborative learning (e.g., discussion rather than lecturing). To evaluate the effectiveness of the Physiology OFC, we compared it with online live teaching (OLT) offered in the same school and semester. We analyzed the exam scores of the Physiology course as well as the scores for other courses offered in the same semester and after the Physiology course. We categorized the top 27% of the exam takers as high-achieving students and the bottom 27% as low-achieving students. Our analysis found no statistically significant difference between OFC and OLT in terms of overall exam scores for all students. However, high-achieving students in OFC scored higher on the total exam score and short answer questions, but the score of case study questions (CSQs) of low-achieving students was lower. Furthermore, students in OFC scored higher in Medical Immunology and courses dominated by logical thinking such as Pharmacology and Diagnostics than students in OLT. In conclusion, our findings suggest that OFC can achieve the same teaching effectiveness as OLT, with a more positive impact on high-achieving students. The positive impact extends beyond the Physiology course to other courses where logical thinking is critical. However, the lower performance of low-achieving students in CSQs highlights the need for further research to determine the reasons for their lower performance and potential strategies to improve their learning outcomes.NEW & NOTEWORTHY An online flipped classroom approach achieved the same teaching effect as online live teaching but had a more positive impact on high-achieving students. The positive impact was not only in Physiology but also in subsequent courses where logical thinking prevailed. However, for low-achieving students, the effect of online live teaching was better.


Assuntos
Currículo , Aprendizagem Baseada em Problemas , Humanos , Aprendizagem Baseada em Problemas/métodos , Estudantes , Aprendizagem , Pensamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...