Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(1): pgac270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712940

RESUMO

The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senescent fibroblasts impose nuclear lobulations and volume shrinkage on malignant cells, which stems from the loss of RhoA/ROCK/myosin II-based cortical tension. This loss in cytoskeletal tension induces decreased cellular contractility, adhesion, and increased mechanical compliance. These SASP-induced morphological changes are, in part, mediated by Lamin A/C. These findings suggest that SASP induces defective outside-in mechanotransduction from actomyosin fibers in the cytoplasm to the nuclear lamina, thereby triggering a cascade of biophysical and biomolecular changes in cells that associate with malignant transformations.

2.
Genes (Basel) ; 15(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254937

RESUMO

Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection.


Assuntos
Anormalidades Múltiplas , Síndrome CHARGE , Surdez , Face , Perda Auditiva Neurossensorial , Doenças Hematológicas , Doenças Vestibulares , Animais , Criança , Humanos , Camundongos , Causalidade , Face/anormalidades , Audição , Perda Auditiva Neurossensorial/genética
3.
Elife ; 3: e02996, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25161194

RESUMO

Despite the well-established role of heterochromatin in protecting chromosomal integrity during meiosis and mitosis, the contribution and extent of heterochromatic histone posttranslational modifications (PTMs) remain poorly defined. Here, we gained novel functional insight about heterochromatic PTMs by analyzing histone H3 purified from the heterochromatic germline micronucleus of the model organism Tetrahymena thermophila. Mass spectrometric sequencing of micronuclear H3 identified H3K23 trimethylation (H3K23me3), a previously uncharacterized PTM. H3K23me3 became particularly enriched during meiotic leptotene and zygotene in germline chromatin of Tetrahymena and C. elegans. Loss of H3K23me3 in Tetrahymena through deletion of the methyltransferase Ezl3p caused mislocalization of meiosis-induced DNA double-strand breaks (DSBs) to heterochromatin, and a decrease in progeny viability. These results show that an evolutionarily conserved developmental pathway regulates H3K23me3 during meiosis, and our studies in Tetrahymena suggest this pathway may function to protect heterochromatin from DSBs.


Assuntos
Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/genética , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Quebras de DNA de Cadeia Dupla , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Deleção de Genes , Heterocromatina/química , Histona-Lisina N-Metiltransferase/deficiência , Histonas/genética , Meiose/genética , Metilação , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/metabolismo , Dados de Sequência Molecular , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Tetrahymena thermophila/genética
4.
Curr Opin Cell Biol ; 28: 105-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24886773

RESUMO

In recent years, our view of the nucleus has changed considerably with an increased awareness of the roles dynamic higher order chromatin structure and nuclear organization play in nuclear function. More recently, proteomics approaches have identified differential expression of nuclear lamina and nuclear envelope transmembrane (NET) proteins. Many NETs have been implicated in a range of developmental disorders as well as cell-type specific biological processes, including genome organization and nuclear morphology. While further studies are needed, it is clear that the differential nuclear envelope proteome contributes to cell-type specific nuclear identity and functions. This review discusses the importance of proteome diversity at the nuclear periphery and highlights the putative roles of NET proteins, with a focus on nuclear architecture.


Assuntos
Genoma , Membrana Nuclear/genética , Proteoma/metabolismo , Animais , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteoma/genética
5.
Curr Opin Genet Dev ; 25: 50-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24556270

RESUMO

The nuclear periphery has been implicated in gene regulation and it has been proposed that proximity to the nuclear lamina and inner nuclear membrane (INM) leads to gene repression. More recently, it appears that there is a correlation and interdependence between lamina associated domains (LADs), the epigenome and overall three-dimensional architecture of the genome. However, the mechanisms of such organization at the 'peripheral zone' and the functional significance of these associations are poorly understood. The role these domains play in development and disease is an active and exciting area of research, expanding our knowledge of how the three-dimensional (3D) genome is regulated.


Assuntos
Genoma , Lâmina Nuclear/genética , Animais , Epigênese Genética , Humanos , Lâmina Nuclear/química , Conformação de Ácido Nucleico
6.
Cell ; 149(7): 1474-87, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726435

RESUMO

A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2ß. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Mitose , Lâmina Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , DNA/química , Drosophila/metabolismo , Histona Desacetilases/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Células NIH 3T3 , Membrana Nuclear/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...