Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12117, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840647

RESUMO

Optical control of the magnetic properties in topological insulator systems is an important step in applying these materials in ultrafast optoelectronic and spintronic schemes. In this work, we report the experimental observation of photo-induced magnetization dynamics in the magnetically doped topological insulator (MTI)/antiferromagnet (AFM) heterostructure composed of Cr-(Bi,Sb)2Te3/CrSb. Through proximity coupling to the AFM layer, the MTI displays a dramatically enhanced magnetism, with robust perpendicular magnetic anisotropy. When subjected to intense laser irradiation, both surface and bulk magnetism of the MTI are weakened by laser-induced heating of the lattice, however, at the surface, the deleterious heat effect is compensated by the strengthening of Dirac-hole-mediated exchange coupling as demonstrated by an unconventional pump-fluence-dependent exchange-bias effect. Through theoretical analyses, the sizes of exchange coupling energies are estimated in the MTI/AFM bilayer structure. The fundamentally different mechanisms supporting the surface and bulk magnetic order in MTIs allow a novel and distinctive photo-induced transient magnetic state with antiparallel spin configuration, which broadens the understanding of the magnetization dynamics of MTIs under ultrashort and intense optical excitation.

2.
Sci Rep ; 4: 6191, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25155873

RESUMO

The interaction between surface plasmons (SP) and magnetic behavior has generated great research interest due to its potential for future magneto-optical devices with ultra-high sensitivity and ultra-fast switching. Here we combine two surface sensitive effects: magnetic second-harmonic generation (MSHG) and SP to enhance the detection sensitivity of the surface magnetization in a single-crystal iron film. We show that the MSHG signal can be significantly enhanced by SP in an attenuated total reflection (ATR) condition, and that the magnetic contrast can be varied over a wide range by the angle-of-incidence. Furthermore, the magnetic contrast of transverse and longitudinal MSHG display opposite trends, which originates from the change of relative phase between MSHG components. This new effect enhances the sensing of magnetic switching, which has potential usage in quaternary magnetic storage systems and bio-chemical sensors due to its very high surface sensitivity and simple structure.

3.
Opt Express ; 21(23): 28842-8, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514397

RESUMO

We present experimental studies on surface plasmon (SP) enhanced transverse magnetic second-harmonic generation (T-MSHG) in single-crystal iron films grown by molecular beam epitaxy at room temperature on MgO (001) substrates. We show that it is possible to achieve both strongly enhanced T-MSHG intensity and high magnetic contrast ratio under attenuated total reflection configuration without using complex heterostructures because MSHG is generated directly at the iron surface where SPs are present. The T-MSHG has a much larger contrast ratio than transverse magneto-optical Kerr effect (T-MOKE) and shows great potential for a new generation of bio-chemical sensors due to its very high surface sensitivity. In addition, by analyzing the experimental results and the simulations based on SP field-enhancement theory, we demonstrate that the second-order susceptibility of MSHG shows great anisotropy and the tensor χ(xzz)(odd) is dominant in our sample.

4.
Appl Opt ; 51(12): 1945-9, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534900

RESUMO

We have built a setup with high temporal resolution to measure the very fast photoelastic lensing effect, which is on the scale of microseconds in a Ti:sapphire crystal pumped by very strong laser pulses (up to 5 J/cm2). The experimental results measured by this method and the real multimode beam profile taken by a CCD camera are applied to a three-dimensional crystal model to calculate one of the photoelastic constants of Ti:sapphire crystal, which is found to be p31=-0.03±0.01. This value is helpful to evaluate the photoelastic lensing effect in Ti:sapphire crystal for a laser beam polarized along the c axis, commonly used for laser amplification.

5.
Appl Opt ; 44(27): 5818-23, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16201448

RESUMO

We studied the spatial intensity profile of an ultrashort laser pulse passing through a laser beam shaping system, which uses diffractive optical elements to reshape a Gaussian beam profile into a flat-topped distribution. Both dispersion and nonlinear self-phase modulation are included in the theoretical model. Our calculation shows that this system works well for ultrashort pulses (approximately 100 fs) when the pulse peak intensity is less than 5 x 10(11) W/cm2. Experimental results are presented for 136 fs pulses at 800 nm wavelength from a Ti:sapphire laser with a 6 nJ pulse energy. We also studied the effects of lateral misalignment, beam-size deviation, and defocusing on the energy fluence profile.

6.
J Chem Phys ; 120(10): 4755-8, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267335

RESUMO

Low-energy coherent charge-density wave excitations are investigated in blue bronze (K(0.3)MoO(3)) and red bronze (K(0.33)MoO(3)) by femtosecond pump-probe spectroscopy. A linear gapless, acousticlike dispersion relation is observed for the transverse phasons with a pronounced anisotropy in K(0.33)MoO(3). The amplitude mode exhibits a weak (opticlike) dispersion relation with a frequency of 1.67 THz at 30 K. Our results show for the first time that the time-resolved optical technique provides momentum resolution of collective excitations in strongly correlated electron systems.

7.
Appl Opt ; 42(4): 715-8, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12564491

RESUMO

We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...