Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5728, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459163

RESUMO

Results on the magnetic domain walls in rapidly solidified magnetostrictive and non-magnetostrictive amorphous submicronic wires are reported. Utilizing Lorentz transmission electron microscopy (LTEM) for the first time in this context, we have visualized and analyzed the domain walls in such ultra-thin amorphous wires. All the investigated samples display vortex magnetic domain walls, regardless of wire composition or diameter. In non-magnetostrictive wires, the domain walls maintain their structure and symmetry under varying magnetic field conditions. In contrast, magnetostrictive wires show an elongation of their domain walls upon magnetic field application, a response linked to the magnetoelastic coupling between magnetostriction and internal stresses induced during wire preparation. This study advances the understanding of magnetization reversal processes in amorphous submicronic wires. The insights gained are crucial for future developments in miniaturized magnetic devices.

2.
Sci Rep ; 9(1): 5868, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971768

RESUMO

The torsion effect on the field and current driven magnetization reversal and the associated domain wall velocity in cylindrical amorphous and nanocrystalline glass-coated microwires is reported. Samples from three representative compositions have been investigated: (1) amorphous Fe77.5Si7.5B15 with positive magnetostriction, λ ≅ 25 × 10-6, (2) amorphous Co68.18Fe4.32Si12.5B15 with nearly zero negative magnetostriction, λ ≅ -1 × 10-7, and (3) nanocrystalline Fe73.5Si13.5B9Cu1Nb3 (FINEMET) with small positive magnetostriction, λ ≅ 2.1 × 10-6, all having the diameter of the metallic nucleus, d, of 20 µm and the glass coating thickness, tg, of 11 µm. The results are explained through a phenomenological interpretation of the effects of applied torque on the anisotropy axes within the microwires with different characteristics. Among all the complex mechanical deformations caused by the application of torque on magnetic microwire samples, the most important are the axial compression - for axial field-driven domain wall motion, and the circumferential tension - for electrical current/circumferential field-driven domain wall motion. The Co68.18Fe4.32Si12.5B15 microwire, annealed at 300 °C for 1 hour and twisted at 168 Rad/m exhibits the optimum characteristics, e.g. the lowest switching current (down to 9 mA~2.9 × 10-3 A/cm2) and the largest domain wall velocity (up to 2300 m/s).

3.
Sci Rep ; 8(1): 11538, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069055

RESUMO

We introduce a new type of magnetic particles (MPs) prepared by wet milling of superferromagnetic Fe-Cr-Nb-B precursor glassy ribbons for cancer treatment by magneto-mechanical actuation in low magnetic fields (1 ÷ 20 Oe). The rectangular shapes of MPs and the superferromagnetism of the glassy alloys of which are made the MPs induce important magnetic shape anisotropies which, in association with a large saturation magnetization, generate an improved torque in a rotating magnetic field, producing important damages on the cellular viability of MG-63 human osteosarcoma (HOS) cells. The specific parameters such as MPs concentration, frequency and intensity of the applied magnetic field, or the time of exposure have a strong influence on the cancer cells viability. The specific behavior of the Fe-Cr-Nb-B MPs offers them destructive effect even in low magnetic fields such as 10 Oe, and this characteristic allows the use of coils systems which provide large experimental spaces. The novel MPs are used for the magneto-mechanical actuation alone or in association with hyperthermia, but also can be transported to the tumor sites by means of stem cells carriers.


Assuntos
Ligas , Campos Magnéticos , Imãs , Nanopartículas Metálicas , Osteossarcoma/terapia , Estresse Mecânico , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...