Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sensors (Basel) ; 23(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631721

RESUMO

Anomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect anomalous events in urban sequences using pre-trained convolutional neural networks (CNN) and super-resolution (SR) models. The proposal is composed of two parts. In the offline stage, the pre-trained CNN model evaluated a large dataset of urban sequences to detect and establish the common locations of the elements of interest. Analyzing the offline sequences, a density matrix is calculated to learn the spatial patterns and identify the most frequent locations of these elements. Based on probabilities previously calculated from the offline analysis, the pre-trained CNN, now in an online stage, assesses the probability of anomalies appearing in the real-time sequence using the density matrix. Experimental results demonstrate the effectiveness of the presented approach in detecting several anomalies, such as unusual pedestrian routes. This research contributes to urban surveillance by providing a practical and reliable method to improve public safety in urban environments. The proposed methodology can assist city management authorities in proactively detecting anomalies, thus enabling timely reaction and improving urban safety.

2.
Int J Neural Syst ; 28(5): 1750056, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29297263

RESUMO

One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the input data could change with time (e.g. changing illuminations, waving trees, water, etc.). In this work, an unsupervised learning neural network is proposed which is able to cope with progressive changes in the input distribution. It is based on a dual learning mechanism which manages the changes of the input distribution separately from the cluster detection. The proposal is adequate for scenes where the background varies slowly. The performance of the method is tested against several state-of-the-art foreground detectors both quantitatively and qualitatively, with favorable results.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Humanos , Reconhecimento Automatizado de Padrão/métodos , Aprendizado de Máquina não Supervisionado
3.
Theor Biol Med Model ; 11 Suppl 1: S7, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25077572

RESUMO

BACKGROUND: Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis helping in the tasks of identifying relevant genes and also for maximizing predictive information. METHODS: Due to its simplicity and speed, Stepwise Forward Selection (SFS) is a widely used feature selection technique. In this work, we carry a comparative study of SFS and Genetic Algorithms (GA) as general frameworks for the analysis of microarray data with the aim of identifying group of genes with high predictive capability and biological relevance. Six standard and machine learning-based techniques (Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Naive Bayes (NB), C-MANTEC Constructive Neural Network, K-Nearest Neighbors (kNN) and Multilayer perceptron (MLP)) are used within both frameworks using six free-public datasets for the task of predicting cancer outcome. RESULTS: Better cancer outcome prediction results were obtained using the GA framework noting that this approach, in comparison to the SFS one, leads to a larger selection set, uses a large number of comparison between genetic profiles and thus it is computationally more intensive. Also the GA framework permitted to obtain a set of genes that can be considered to be more biologically relevant. Regarding the different classifiers used standard feedforward neural networks (MLP), LDA and SVM lead to similar and best results, while C-MANTEC and k-NN followed closely but with a lower accuracy. Further, C-MANTEC, MLP and LDA permitted to obtain a more limited set of genes in comparison to SVM, NB and kNN, and in particular C-MANTEC resulted in the most robust classifier in terms of changes in the parameter settings. CONCLUSIONS: This study shows that if prediction accuracy is the objective, the GA-based approach lead to better results respect to the SFS approach, independently of the classifier used. Regarding classifiers, even if C-MANTEC did not achieve the best overall results, the performance was competitive with a very robust behaviour in terms of the parameters of the algorithm, and thus it can be considered as a candidate technique for future studies.


Assuntos
Algoritmos , Neoplasias/genética , Redes Neurais de Computação , Análise de Sequência com Séries de Oligonucleotídeos , Estatística como Assunto , Bases de Dados Genéticas , Feminino , Genes Neoplásicos , Humanos , Masculino
4.
Int J Neural Syst ; 21(3): 225-46, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21656925

RESUMO

Background modeling and foreground detection are key parts of any computer vision system. These problems have been addressed in literature with several probabilistic approaches based on mixture models. Here we propose a new kind of probabilistic background models which is based on probabilistic self-organising maps. This way, the background pixels are modeled with more flexibility. On the other hand, a statistical correlation measure is used to test the similarity among nearby pixels, so as to enhance the detection performance by providing a feedback to the process. Several well known benchmark videos have been used to assess the relative performance of our proposal with respect to traditional neural and non neural based methods, with favourable results, both qualitatively and quantitatively. A statistical analysis of the differences among methods demonstrates that our method is significantly better than its competitors. This way, a strong alternative to classical methods is presented.


Assuntos
Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Redes Neurais de Computação , Gravação em Vídeo/métodos , Algoritmos , Benchmarking
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...