Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 1): 155978, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588800

RESUMO

In coastal aquifers, two opposite but complementary processes occur: Seawater intrusion (SWI), which may salinize heavily exploited aquifers, and Submarine groundwater discharge (SGD) which transports oligo-elements to the sea. Aquifers are expected to be chemically reactive, both because they provide abundant surfaces to catalyze reactions and the mixing of very different Fresh Water (FW) and Sea Water (SW) promote numerous reactions. Characterizing and quantifying these reactions is essential to assess the quality and composition of both aquifer water, and SGD. Indeed, sampling SGD is difficult, so its composition is usually uncertain. We propose a reactive end-member mixing analysis (rEMMA) methodology based on principal component analysis (PCA) to (i) identify the sources of water and possible reactions occurring in the aquifer and (ii) quantify mixing ratios and the extent of chemical reactions. We applied rEMMA to the Argentona coastal aquifer located North of Barcelona that contains fluvial sediments of granitic origin and overlies weathered granite. The identification of end members (FW and SW) and the spatial distribution of their mixing ratios illustrate the application procedure. The extent of reactions and their spatial distribution allow us to distinguish reactions that occur as a result of mixing from those caused by sediment disequilibrium, which are relevant to recirculated saltwater SGD. The most important reaction is cation exchange, especially between Ca and Na, which promotes other reactions such as Gypsum and Fluorite precipitation. Iron and Manganese are mobilized in the SW portion but oxidized and precipitated in the mixing zone, so that Fe (up to 15 µEq/L) and Mn (up to 10 µEq/L) discharge is restricted to SW SGD. Nitrate is reduced in the mixing zone. The actual reaction amounts are site-specific, but the processes are not, which leads us to conjecture the importance of these reactions to understand the SGD discharge elsewhere.


Assuntos
Água Subterrânea , Monitoramento Ambiental , Água Doce , Água Subterrânea/análise , Água do Mar/análise , Navios , Água/análise
2.
J Hazard Mater ; 405: 124133, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33127192

RESUMO

Natural attenuation in acid mine drainage (AMD) due to biological iron and arsenic oxidation offers a promising strategy to treat As-rich AMD in passive bioreactors. A reactive transport model is developed in order to identify the main controlling factors. It simulates batch and flow-through experiments that reproduce natural attenuation in a high-As AMD. The 2-D model couples second-order microbial kinetics (Fe- and As- oxidation) and geochemical reactions to hydrodynamic transport. Oxidation only occurrs in the biofilm with an oxygen transfer from the air through the water column. The model correctly simulates the Fe(II)-Fe(III) and As(III)-As(V) concentrations in the outlet waters and the precipitates, over hydraulic retention times from 30 min to 800 min. It confirms that the natural attenuation at 20 °C is driven by the fast Fe(II) oxidation and slow As(III) oxidation that favors arsenite trapping by schwertmannite over amorphous ferric arsenate (AFA) formation. The localization of iron oxidation in the biofilm limits the attenuation of arsenic and iron as the water column height increases. The change in the composition of the bacterial iron-oxidizer community of the biofilm at the lowest pH boundary seems to control the Fe(II) oxidation kinetic rate besides the bacterial concentration.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Reatores Biológicos , Ferro , Cinética , Oxirredução , Poluentes Químicos da Água/análise
3.
FEMS Microbiol Ecol ; 90(3): 922-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25348057

RESUMO

In aquifers subject to saline water intrusion, the mixing zone between freshwater and saltwater displays strong physico-chemical gradients. Although the microbial component of these specific environments has been largely disregarded, the contribution of micro-organisms to biogeochemical reactions impacting water geochemistry has previously been conjectured. The objective of this study was to characterize and compare bacterial community diversity and composition along a vertical saline gradient in a carbonate coastal aquifer using high throughput sequencing of 16S rRNA genes. At different depths of the mixing zone, stable geochemical and hydrological conditions were associated with autochthonous bacterial communities harboring clearly distinct structures. Diversity pattern did not follow the salinity gradient, although multivariate analysis indicated that salinity was one of the major drivers of bacterial community composition, with organic carbon, pH and CO2 partial pressure. Correlation analyses between the relative abundance of bacterial taxa and geochemical parameters suggested that rare taxa may contribute to biogeochemical processes taking place at the interface between freshwater and saltwater. Bacterial respiration or alternative metabolisms such as sulfide oxidation or organic acids production may be responsible for the acidification and the resulting induced calcite dissolution observed at a specific depth of the mixing zone.


Assuntos
Bactérias/classificação , Bactérias/genética , Água Doce/microbiologia , Água Subterrânea/microbiologia , Consórcios Microbianos , Água do Mar/microbiologia , Sequência de Bases , Biodiversidade , Carbonatos/metabolismo , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Microbiologia da Água
4.
J Contam Hydrol ; 120-121: 45-55, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20797806

RESUMO

Numerical programs for simulating flow and reactive transport in porous media are essential tools for predicting reservoir properties changes triggered by CO(2) underground injection. At reservoir scale, meshed models in which equations are solved assuming that constant macroscopic properties can be defined in each cells, are widely used. However, the parameterization of the dissolution-precipitation problem and of the feedback effects of these processes on the flow field is still challenging. The problem arises from the mismatch between the scales at which averaged parameters are defined in the meshed model and the scale at which chemical reactions occur and modify the pore network geometry. In this paper we investigate the links between the dissolution mechanisms that control the porosity changes and the related changes of the reactive surface area and of the permeability. First, the reactive surface area is computed from X-ray microtomography data obtained before and after a set of dissolution experiments of pure calcite rock samples using distinctly different brine-CO(2) mixtures characterizing homogeneous to heterogeneous dissolution regimes. The results are used to validate the power law empirical model relating the reactive surface area to porosity proposed by Luquot and Gouze (2009). Second, we investigate the spatial distribution of the effective hydraulic radius and of the tortuosity, two structural parameters that control permeability, in order to explain the different porosity-permeability relationships observed for heterogeneous and homogeneous dissolution regimes. It is shown that the increase of permeability is due to the decrease of the tortuosity for homogeneous dissolution, whereas it is due to the combination of tortuosity decrease and hydraulic radius increase for heterogeneous dissolution. For the intermediate dissolution regime, identified to be the optimal regime for increasing permeability with small changes in porosity, the increase of permeability results from a large increase in the mean effective hydraulic radius of the sample.


Assuntos
Dióxido de Carbono/análise , Poluentes Ambientais/análise , Sais/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Monitoramento Ambiental , Modelos Teóricos , Permeabilidade , Porosidade , Movimentos da Água , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...