Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; : e3013, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004420

RESUMO

Streamflow regimes that maintain vital functions and processes of aquatic ecosystems are critical to sustaining ecosystem health. In rivers with altered flow regimes, restoring components of the natural flow regime is predicted to conserve freshwater biodiversity by supporting ecological functions and geomorphological processes to which native communities are adapted. However, the effectiveness of environmental flow restoration is poorly understood because of inadequate monitoring and uncertainty in ecological responses to managed changes in specific, quantifiable aspects of the annual streamflow regime. Here, we used time series models to analyze 25 years of fish assemblage data collected before and after environmental flow implementation in a dammed river in California, USA. We examined the response of the fish community to changes in individual components of the flow regime known to support ecosystem functions. We found that as functional flow components shifted toward their predicted natural range, the quasi-extinction risk (likelihood of population declines of >80%) decreased for the native fish assemblage. Following environmental flow implementation, observed changes toward natural ranges of dry season duration, fall pulse flow magnitude, and wet season timing each reduced quasi-extinction risk by at least 40% for the native assemblage. However, functional flow components that shifted away from their predicted natural range, including lower spring recession flows and higher dry season baseflow, resulted in greater quasi-extinction risk for native species. In contrast, non-native species decreased in abundance when flow components shifted toward predicted natural ranges and increased when components shifted away from their natural range. Although most functional flow components remained outside of their natural range following environmental flow implementation, our results indicate that even moderate shifts toward a natural flow regime can benefit native and suppress non-native fish species. Overall, this study provides the most compelling evidence to date of the effectiveness of functional environmental flows in supporting native fish recovery in a highly regulated river.

2.
J Environ Manage ; 345: 118852, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647732

RESUMO

Aquatic ecosystems world-wide are being irreversibly altered, suggesting that new and innovative management strategies are necessary to improve ecosystem function and sustainability. In river ecosystems degraded by dams environmental flows and selective withdrawal (SWD) infrastructure have been used to improve habitat for native species. Yet, few studies have quantified nutrient and food web export subsidies from upstream reservoirs, despite their potential to subsidize downstream riverine food webs. We sampled nutrient, phytoplankton, and zooplankton concentrations in outflows from the Shasta-Keswick reservoir complex in Northern California over a 12-month period to understand how SWD operation and internal reservoir conditions interact to influence subsidies to the Sacramento River. We found that nutrients, phytoplankton, and zooplankton were continuously exported from Shasta Reservoir to the Sacramento River and that gate operations at Shasta Dam were important in controlling exports. Further, our results indicate that gate operations and water-export depth strongly correlated with zooplankton community exports, whereas internal reservoir conditions (mixing and residence time) controlled concentrations of exported zooplankton biomass and chlorophyll a. These results demonstrate that reservoirs can be an important source of nutrient and food web subsidies and that selective withdrawal infrastructure may provide a valuable management tool to control ecosystem-level productivity downstream of dams.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Clorofila A , Biomassa , Nutrientes , Zooplâncton
3.
Conserv Physiol ; 11(1): coad044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346267

RESUMO

Understanding interpopulation variation is important to predicting species responses to climate change. Recent research has revealed interpopulation variation among several species of Pacific salmonids; however, the environmental drivers of population differences remain elusive. We tested for local adaptation and countergradient variation by assessing interpopulation variation among six populations of fall-run Chinook Salmon from the western United States. Juvenile fish were reared at three temperatures (11, 16 and 20°C), and five physiological metrics were measured (routine and maximum metabolic rate, aerobic scope, growth rate and critical thermal maximum). We then tested associations between these physiological metrics and 15 environmental characteristics (e.g. rearing temperature, latitude, migration distance, etc.). Statistical associations between the five physiological metrics and 15 environmental characteristics supported our hypotheses of local adaptation. Notably, latitude was a poor predictor of population physiology. Instead, our results demonstrate that populations from warmer habitats exhibit higher thermal tolerance (i.e. critical thermal maxima), faster growth when warm acclimated and greater aerobic capacity at high temperatures. Additionally, populations with longer migrations exhibit higher metabolic capacity. However, overall metabolic capacity declined with warm acclimation, indicating that future climate change may reduce metabolic capacity, negatively affecting long-migrating populations. Linking physiological traits to environmental characteristics enables flexible, population-specific management of disparate populations in response to local conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...