Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mar Pollut Bull ; 207: 116803, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116467

RESUMO

Microplastic pollution was studied in surface waters of Isfjorden, Svalbard in July 2021 as a part of an international regional harmonisation exercise. Surface microplastics (0.5-5 mm) were sampled with a neuston net in triplicate per study site in several branches of Isfjorden, covering populated and unpopulated fjords. High spatial variability of microplastic abundance (0-32,700 items/km2) was observed within a single fjord resulting from the hydrodynamic pattern formed through the interaction of surface currents, freshwater runoff, and wind conditions. Maximum microplastic abundance was not correlated with the distance from the local source and was instead defined by local small-scale hydrodynamics. Future recommendations for correct assessment of surface microplastics concentration in estuarine environments are presented.

2.
Heliyon ; 10(15): e35022, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170486

RESUMO

Given that a substantial amount of time is spent in kitchens preparing food, the kitchen equipment used may be relevant in determining the composition and amount of microplastics ending up on our dinner plate. While previous research has predominantly focused on foodstuffs as a source of microplastics, we emphasise that micro- and nanoplastics are ubiquitous and likely originate from diverse sources. To address the existing knowledge gap regarding additional sources contributing to microplastics on our dinner plates, this review investigates various kitchen processes, utensils and equipment (excluding single-use items and foodstuffs) to get a better understanding of potential microplastic sources within a home kitchen. Conducting a narrative literature review using terms related to kitchenware and kitchen-affiliated equipment and processes, this study underscores that the selection of preparation tools, storage, serving, cooking, and cleaning procedures in our kitchens may have a significant impact on microplastic exposure. Mechanical, physical, and chemical processes occurring during food preparation contribute to the release of microplastic particles, challenging the assumption that exposure to microplastics in food is solely tied to food products or packaging. This review highlights diverse sources of microplastics in home kitchens, posing concerns for food safety and human health.

3.
Sci Rep ; 14(1): 12714, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830923

RESUMO

Infrastructure is often a limiting factor in microplastics research impacting the production of scientific outputs and monitoring data. International projects are therefore required to promote collaboration and development of national and regional scientific hubs. The Commonwealth Litter Programme and the Ocean Country Partnership Programme were developed to support Global South countries to take actions on plastics entering the oceans. An international laboratory network was developed to provide the infrastructure and in country capacity to conduct the collection and processing of microplastics in environmental samples. The laboratory network was also extended to include a network developed by the University of East Anglia, UK. All the laboratories were provided with similar equipment for the collection, processing and analysis of microplastics in environmental samples. Harmonised protocols and training were also provided in country during laboratory setup to ensure comparability of quality-controlled outputs between laboratories. Such large networks are needed to produce comparable baseline and monitoring assessments.


Assuntos
Monitoramento Ambiental , Laboratórios , Microplásticos , Microplásticos/análise , Monitoramento Ambiental/métodos , Laboratórios/normas , Cooperação Internacional
4.
Sci Total Environ ; 929: 172577, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641111

RESUMO

Microplastics are a prolific environmental contaminant that have been evidenced in human tissues. Human uptake of microplastic occurs via inhalation of airborne fibres and ingestion of microplastic-contaminated foods and beverages. Plastic and PTFE-coated cookware and food contact materials may release micro- and nanoplastics into food during food preparation. In this study, the extent to which non-plastic, new plastic and old plastic cookware releases microplastics into prepared food is investigated. Jelly is used as a food simulant, undergoing a series of processing steps including heating, cooling, mixing, slicing and storage to replicate food preparation steps undertaken in home kitchens. Using non-plastic cookware did not introduce microplastics to the food simulant. Conversely, using new and old plastic cookware resulted in significant increases in microplastic contamination. Microplastics comprised PTFE, polyethylene and polypropylene particulates and fibrous particles, ranging 13-318 µm. Assuming a meal was prepared daily per the prescribed methodology, new and old plastic cookware may be contributing 2409-4964 microplastics per annum into homecooked food. The health implications of ingesting microplastics remains unclear.


Assuntos
Contaminação de Alimentos , Microplásticos , Microplásticos/análise , Contaminação de Alimentos/análise , Politetrafluoretileno , Utensílios de Alimentação e Culinária , Monitoramento Ambiental , Plásticos/análise , Culinária
5.
Sci Total Environ ; 905: 167096, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37716672

RESUMO

We demonstrate a prototype multi-metric indicator-based assessment tool (i.e. Marine Litter Assessment Tool - MALT) for mapping and identification of 'problem areas' and 'non-problem areas' regarding the occurrence of marine litter in Europe's seas. The study is based on a European-wide data set consisting of three marine litter indicators: (1) litter at the seafloor, (2) beach litter and (3) floating micro-litter. This publicly available data allowed litter status to be determined in 1,957,081 km2 (19.1 %) of the total area of Europe's seas (10,243,474 km2). Of the area assessed, 25.8 % (505,030 km2) was found to be 'non-problem areas' whilst 'problem areas' accounted for 74.2 % (1,452,051 km2). This indicates that marine litter is a large-scale problem in Europe's seas.

6.
Ecotoxicol Environ Saf ; 264: 115406, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639826

RESUMO

Microplastics (MP) are perceived as a threat to aquatic ecosystems but bear many similarities to suspended sediments which are often considered less harmful. It is, therefore pertinent to determine if and to what extent MP are different from other particles occurring in aquatic ecosystems in terms of their adverse effects. We applied meta-regressions to toxicity data extracted from the literature and harmonized the data to construct Species Sensitivity Distributions (SSDs) for both types of particles. The results were largely inconclusive due to high uncertainty but the central tendencies of our estimates still indicate that MP could be marginally more hazardous compared to suspended sediments. In part, the high uncertainty stems from the general lack of comparable experimental studies and dose-dependent point estimates. We therefore argue that until more comparable data is presented, risk assessors should act precautionary and treat MP in the 1-1000 µm size range as marginally more hazardous to aquatic organisms capable of ingesting such particles.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ursidae , Animais , Ecossistema , Microplásticos/toxicidade , Plásticos/toxicidade , Incerteza
7.
Chemosphere ; 334: 138875, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37187379

RESUMO

Previous studies have evaluated method performance for quantifying and characterizing microplastics in clean water, but little is known about the efficacy of procedures used to extract microplastics from complex matrices. Here we provided 15 laboratories with samples representing four matrices (i.e., drinking water, fish tissue, sediment, and surface water) each spiked with a known number of microplastic particles spanning a variety of polymers, morphologies, colors, and sizes. Percent recovery (i.e., accuracy) in complex matrices was particle size dependent, with ∼60-70% recovery for particles >212 µm, but as little as 2% recovery for particles <20 µm. Extraction from sediment was most problematic, with recoveries reduced by at least one-third relative to drinking water. Though accuracy was low, the extraction procedures had no observed effect on precision or chemical identification using spectroscopy. Extraction procedures greatly increased sample processing times for all matrices with the extraction of sediment, tissue, and surface water taking approximately 16, 9, and 4 times longer than drinking water, respectively. Overall, our findings indicate that increasing accuracy and reducing sample processing times present the greatest opportunities for method improvement rather than particle identification and characterization.


Assuntos
Água Potável , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
8.
Chemosphere ; 333: 138883, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169088

RESUMO

Quality assurance and quality control (QA/QC) techniques are critical to analytical chemistry, and thus the analysis of microplastics. Procedural blanks are a key component of QA/QC for quantifying and characterizing background contamination. Although procedural blanks are becoming increasingly common in microplastics research, how researchers acquire a blank and report and/or use blank contamination data varies. Here, we use the results of laboratory procedural blanks from a method evaluation study to inform QA/QC procedures for microplastics quantification and characterization. Suspected microplastic contamination in the procedural blanks, collected by 12 participating laboratories, had between 7 and 511 particles, with a mean of 80 particles per sample (±SD 134). The most common color and morphology reported were black fibers, and the most common size fraction reported was 20-212 µm. The lack of even smaller particles is likely due to limits of detection versus lack of contamination, as very few labs reported particles <20 µm. Participating labs used a range of QA/QC techniques, including air filtration, filtered water, and working in contained/'enclosed' environments. Our analyses showed that these procedures did not significantly affect blank contamination. To inform blank subtraction, several subtraction methods were tested. No clear pattern based on total recovery was observed. Despite our results, we recommend commonly accepted procedures such as thorough training and cleaning procedures, air filtration, filtered water (e.g., MilliQ, deionized or reverse osmosis), non-synthetic clothing policies and 'enclosed' air flow systems (e.g., clean cabinet). We also recommend blank subtracting by a combination of particle characteristics (color, morphology and size fraction), as it likely provides final microplastic particle characteristics that are most representative of the sample. Further work should be done to assess other QA/QC parameters, such as the use of other types of blanks (e.g., field blanks, matrix blanks) and limits of detection and quantification.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Laboratórios , Controle de Qualidade , Água/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 57(15): 6033-6039, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37070279

RESUMO

Plastic pollution is an international environmental problem. Desire to act is shared from the public to policymakers, yet motivation and approaches are diverging. Public attention is directed to reducing plastic consumption, cleaning local environments, and engaging in citizen science initiatives. Policymakers and regulators are working on prevention and mitigation measures, while international, regional, and national bodies are defining monitoring recommendations. Research activities are focused on validating approaches to address goals and comparing methods. Policy and regulation are eager to act on plastic pollution, often asking questions researchers cannot answer with available methods. The purpose of monitoring will define which method is implemented. A clear and open dialogue between all actors is essential to facilitate communication on what is feasible with current methods, further research, and development needs. For example, some methods can already be used for international monitoring, yet limitations including target plastic types and sizes, sampling strategy, available infrastructure and analytical capacity, and harmonization of generated data remain. Time and resources to advance scientific understanding must be balanced against the need to answer pressing policy issues.


Assuntos
Monitoramento Ambiental , Plásticos , Monitoramento Ambiental/métodos , Poluição Ambiental
10.
Anal Bioanal Chem ; 415(15): 2907-2919, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947170

RESUMO

Reference materials (RMs) are vital tools in the validation of methods used to detect environmental pollutants. Microplastics, a relatively new environmental pollutant, require a variety of complex approaches to address their presence in environmental samples. Both interlaboratory comparison (ILC) studies and RMs are essential to support the validation of methods used in microplastic analysis. Presented here are results of quality assurance and quality control (QA/QC) performed on two types of candidate microplastic RMs: dissolvable gelatin capsules and soda tablets. These RMs have been used to support numerous international ILC studies in recent years (2019-2022). Dissolvable capsules containing polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE), and polystyrene (PS), in different size fractions from 50 to 1000 µm, were produced for one ILC study, obtaining relative standard deviation (RSD) from 0 to 24%. The larger size fraction allowed for manual addition of particles to the capsules, yielding 0% error and 100% recovery during QA/QC. Dissolvable capsules were replaced by soda tablets in subsequent ILC studies and recovery test exercises because they were found to be a more reliable carrier for microplastic RMs. Batches of soda tablets were produced containing different single and multiple polymer mixtures, i.e., PE, PET, PS, PVC, polypropylene (PP), and polycarbonate (PC), with RSD ranging from 8 to 21%. Lastly, soda tablets consisting of a mixture of PE, PVC, and PS (125-355 µm) were produced and used for recovery testing during pretreatment of environmental samples. These had an RSD of 9%. Results showed that soda tablets and capsules containing microplastics >50 µm could be produced with sufficient precision for internal recovery tests and external ILC studies. Further work is required to optimize this method for smaller microplastics (< 50 µm) because variation was found to be too large during QA/QC. Nevertheless, this approach represents a valuable solution addressing many of the challenges associated with validating microplastic analytical methods.

11.
Chemosphere ; 313: 137300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414038

RESUMO

Fourier transform infrared (FTIR) and Raman microspectroscopy are methods applied in microplastics research to determine the chemical identity of microplastics. These techniques enable quantification of microplastic particles across various matrices. Previous work has highlighted the benefits and limitations of each method and found these to be complimentary. Within this work, metadata collected within an interlaboratory method validation study was used to determine which variables most influenced successful chemical identification of un-weathered microplastics in simulated drinking water samples using FTIR and Raman microspectroscopy. No variables tested had a strong correlation with the accuracy of chemical identification (r = ≤0.63). The variables most correlated with accuracy differed between the two methods, and include both physical characteristics of particles (color, morphology, size, polymer type), and instrumental parameters (spectral collection mode, spectral range). Based on these results, we provide technical recommendations to improve capabilities of both methods for measuring microplastics in drinking water and highlight priorities for further research. For FTIR microspectroscopy, recommendations include considering the type of particle in question to inform sample presentation and spectral collection mode for sample analysis. Instrumental parameters should be adjusted for certain particle types when using Raman microspectroscopy. For both instruments, the study highlighted the need for harmonization of spectral reference libraries among research groups, including the use of libraries containing reference materials of both weathered plastic and natural materials that are commonly found in environmental samples.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
12.
Sci Total Environ ; 859(Pt 2): 160038, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395847

RESUMO

Ongoing efforts focus on quantifying plastic pollution and describing and estimating the related magnitude of exposure and impacts on human and environmental health. Data gathered during such work usually follows a receptor perspective. However, Life Cycle Assessment (LCA) represents an emitter perspective. This study examines existing data gathering and reporting approaches for field and laboratory studies on micro- and nanoplastics (MNPs) exposure and effects relevant to LCA data inputs. The outcomes indicate that receptor perspective approaches do not typically provide suitable or sufficiently harmonised data. Improved design is needed in the sampling, testing and recording of results using harmonised, validated and comparable methods, with more comprehensive reporting of relevant data. We propose a three-level set of requirements for data recording and reporting to increase the potential for LCA studies and models to utilise data gathered in receptor-oriented studies. We show for which purpose such data can be used as inputs to LCA, particularly in life cycle impact assessment (LCIA) methods. Implementing these requirements will facilitate proper integration of the potential environmental impacts of plastic losses from human activity (e.g. litter) into LCA. Then, the impacts of plastic emissions can eventually be connected and compared with other environmental issues related to anthropogenic activities.


Assuntos
Meio Ambiente , Poluição Ambiental , Humanos , Animais , Estágios do Ciclo de Vida
13.
Animals (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36230361

RESUMO

Information on the habitat use of the Mediterranean monk seal (Monachus monachus) along the coast of Albania (Adriatic and Ionian Sea) has so far been limited to vague and generalised data. A survey conducted in the National Marine Park Karaburun-Sazan in the summer of 2019 identified two marine caves with morphological characteristics best suited for use by such species. The two caves were subsequently equipped with infrared camera traps in 2020. The recovery of a scat in one of the caves during the 2019 survey and the photographic material obtained confirmed the use of the cave. This research provides the first documentation of marine cave habitat use by the Mediterranean monk seal in Albania. Quantitative and qualitative assessment of specimens frequenting the area could not be performed due to the limited data obtained on seal presence along the Albanian coasts. Nevertheless, the retrieved information is relevant for Albania and for the species conservation. The collected scat was analysed for trophic and anthropogenic contamination data. Three species (gilthead sea bream, European sea bass, and garfish), as well as four anthropogenic items (including a piece of nylon net), were identified. The inferences resulting from the analyses of the data presented in this study provided additional information on the ecology of the species and its conservation priorities, which need to be contextualized at the Adriatic-Ionian regional scale.

14.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115477

RESUMO

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microscopia , Plásticos/análise , Polímeros , Cloreto de Polivinila/análise , Água/análise , Poluentes Químicos da Água/análise
15.
Environ Sci Pollut Res Int ; 29(31): 47726-47739, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35181858

RESUMO

Microplastics have been detected in lake environments globally, including in remote regions. Agricultural and populated areas are known to congregate several inputs and release pathways for microplastic. This study investigated microplastic (50-5000 µm) contamination in five Danish freshwater lakes with catchments dominated by arable land use. The concentrations in sediments (n = 3/site) and the zebra mussel, Dreissena polymorpha (n = 30/site), were calculated and compared with catchment characteristics and environmental parameters. Microplastic concentrations in sediment were relatively low (average 0.028 ± 0.017 items/g dry weight sediment) whilst only a single microplastic was found in the mussels (average 0.067 ± 0.249 items/10 individual). Hence, no relationship between the number of observed microplastics in sediment and mussels could be identified, nor could a relationship between concentration in sediment and environmental parameters. As all lakes studied received their water from moderate to heavily anthropogenically impacted catchments, it was expected that they would be sinks for microplastic with high bioavailability. Based on the results of the present study, D. polymorpha were found to not be contaminated by microplastics in the five study lakes. Thus, our results suggest that these mussels do not interact with microplastics at low concentrations. We speculate that the results on sediment and biota could be explained by several factors related to regional differences in plastic use, species characteristics, sampling size, and the fact that finding no microplastic is not always reported in the scientific literature. Thus, the paper provides insight into the dynamics between the catchment, lake, and biota in systems with low microplastic concentration.


Assuntos
Bivalves , Dreissena , Poluentes Químicos da Água , Animais , Dinamarca , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Lagos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
16.
Environ Pollut ; 298: 118808, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007674

RESUMO

Comparative investigations of microplastic (MP) occurrence in the global ocean are often hampered by the application of different methods. In this study, the same sampling and analytical approach was applied during five different cruises to investigate MP covering a route from the East-Siberian Sea in the Arctic, through the Atlantic, and into the Antarctic Peninsula. A total of 121 subsurface water samples were collected using underway pump-through system on two different vessels. This approach allowed subsurface MP (100 µm-5 mm) to be evaluated in five regions of the World Ocean (Antarctic, Central Atlantic, North Atlantic, Barents Sea and Siberian Arctic) and to assess regional differences in MP characteristics. The average abundance of MP for whole studied area was 0.7 ± 0.6 items/m3 (ranging from 0 to 2.6 items/m3), with an equal average abundance for both fragments and fibers (0.34 items/m3). Although no statistical difference was found for MP abundance between the studied regions. Differences were found between the size, morphology, polymer types and weight concentrations. The Central Atlantic and Barents Sea appeared to have more MP in terms of weight concentration (7-7.5 µg/m3) than the North Atlantic and Siberian Arctic (0.6 µg/m3). A comparison of MP characteristics between the two Hemispheres appears to indicate that MP in the Northern Hemisphere mostly originate from terrestrial input, while offshore industries play an important role as a source of MP in the Southern Hemisphere. The waters of the Northern Hemisphere were found to be more polluted by fibers than those of the Southern Hemisphere. The results presented here suggest that fibers can be transported by air and water over long distances from the source, while distribution of fragments is limited mainly to the water mass where the source is located.


Assuntos
Microplásticos , Poluentes Químicos da Água , Regiões Antárticas , Regiões Árticas , Monitoramento Ambiental , Plásticos , Água , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 806(Pt 4): 150818, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637878

RESUMO

Buried microplastics (plastics, <5 mm) have been documented within the sediment column of both marine and lacustrine environments. However, the number of peer-review studies published on the subject remains limited and confidence in data reliability varies considerably. Here we critically review the state of the literature on microplastic loading inventories in dated sedimentary and soil profiles. We conclude that microplastics are being sequestered across a variety of sedimentary environments globally, at a seemingly increasing rate. However, microplastics are also readily mobilised both within depositional settings and the workplace. Microplastics are commonly reported from sediments dated to before the onset of plastic production and researcher-derived microplastics frequently contaminate samples. Additionally, the diversity of microplastic types and issues of constraining source points has so far hindered interpretation of depositional settings. Therefore, further research utilizing high quality data sets, greater levels of reporting transparency, and well-established methodologies from the geosciences will be required for any validation of microplastics as a sediment dating method or in quantifying temporally resolved microplastic loading inventories in sedimentary sinks with confidence.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
18.
Mar Pollut Bull ; 173(Pt B): 113076, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743071

RESUMO

Microplastic presence in benthic marine systems is a widely discussed topic. The influence of the natural matrix on microplastic distribution within the sedimentary matrix is often overlooked. Marine sediments from the western inner Oslofjord, Norway, were investigated for temporal trends, with a particular focus on the relationship between sediment grain-sizes and microplastic distribution. Density separation, optical microscopy and chemical validation were used to categorize microplastics. Microplastic concentrations ranged from 0.02 to 1.71 MPs g -1 dry weight (dw). Fibres were the most common (76%), followed by fragments and films (18%, 6%). Common polymers were polyesters (50%), polypropylene (18%), polymethylmethacrylate (9%), rayon and viscose (5%) and elastane (4%). Microplastics appear to accumulate preferentially according to their morphology and polymer type in certain sediment grain-sizes. Microplastics inputs to the Oslofjord appear to derive from a wastewater treatment plant in the vicinity. Although, the redistribution of microplastics within the fjord needs further investigation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
19.
Environ Int ; 157: 106794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358913

RESUMO

Given the increasing attention on the occurrence of microplastics in the environment, and the potential environmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policymakers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communicating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway's involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.


Assuntos
Microplásticos , Plásticos , Poluição Ambiental/prevenção & controle , Noruega
20.
Sci Total Environ ; 792: 148308, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153762

RESUMO

The Arctic ecosystem receives contaminants transported through complex environmental pathways - such as atmospheric, riverine and oceanographic transport, as well as local infrastructure. A holistic approach is required to assess the impact that plastic pollution may have on the Arctic, especially with regard to the unseen microplastics. This study presents data on microplastics in the Arctic fjords of western Svalbard, by addressing the ecological consequences of their presence in coastal surface waters and sediment, and through non-invasive approaches by sampling faeces from an apex predator, the benthic feeder walrus (Odobenus rosmarus). Sample locations were chosen to represent coastal areas with different degrees of anthropogenic pollution and geographical features (e.g., varying glacial coverage of catchment area, winter ice cover, traffic, visitors), while also relevant feeding grounds for walrus. Microplastics in surface water and sediments ranged between

Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Morsas , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...