Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042272

RESUMO

Control of locomotion involves the interplay of sensory signals and motor commands. Sensory information is essential for adjusting locomotion in response to environmental changes. A previous study using mathematical modelling of lamprey swimming has shown that, in the absence of sensory feedback, increasing fluid viscosity constrains swimming kinematics, limiting tail amplitude and body wavelength, resulting in decreased swimming speed. In contrast, previous experiments with Polypterus senegalus reported increased magnitude swimming kinematics (increased body curvature, body wave speed and frequency, and pectoral fin frequency) in high viscosity water suggesting that sensory information is used to adjust swimming form. It is not known what sensory systems are providing the necessary information to respond to these environmental changes. We tested the hypothesis that lateral line and visual input are responsible for the sensory-driven increase in swimming kinematics in response to experimentally increased fluid viscosity. The kinematics of five P. senegalus were recorded in two different viscosities of water while removing lateral line and visual sensory feedback. Unlike the mathematical model devoid of sensory feedback, P. senegalus with lateral line and/or visual senses removed did not reduce the magnitude of swimming kinematic variables, suggesting that additional sensory feedback mechanisms are present in these fish to help overcome increased fluid viscosity. Increases in swimming speed when both lateral line and visual sensory feedback were removed suggest that lateral line and visual information may be used to regulate swimming speed in P. senegalus, possibly using an internal model of predictions to adjust swimming form.


Assuntos
Privação Sensorial , Natação , Animais , Natação/fisiologia , Locomoção/fisiologia , Peixes/fisiologia , Fenômenos Biomecânicos/fisiologia , Água
2.
J Exp Biol ; 225(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426909

RESUMO

Amphibious fishes moving from water to land experience continuous changes in environmental forces. How these subtle changes impact behavioural transitions cannot be resolved by comparisons of aquatic and terrestrial locomotion. For example, aquatic and terrestrial locomotion appear distinct in the actinopterygian fish Polypterus senegalus; however, it is unclear how gradual water level changes influence the transition between these locomotor behaviours. We tested the hypothesis in P. senegalus that swimming and walking are part of an incremental continuum of behaviour and muscle activity across the environmental transition from water to land rather than two discrete behaviours, as proposed by previous literature. We exposed P. senegalus to discrete environments from fully aquatic to fully terrestrial while recording body and pectoral fin kinematics and muscle activity. Anterior axial red muscle effort increases as water depth decreases; however, a typical swimming-like anterior-to-posterior wave of axial red muscle activity is always present, even during terrestrial locomotion, indicating gradual motor control changes. Thus, walking appears to be based on swimming-like axial muscle activity whereas kinematic differences between swimming and walking appear to be due to mechanical constraints. A discrete change in left-right pectoral fin coordination from in-phase to out-of-phase at 0.7 body depths relies on adductor muscle activity with a similar duty factor and adductor muscle effort that increases gradually as water depth decreases. Thus, despite distinct changes in kinematic timing, neuromuscular patterning is similar across the water depth continuum. As the observed, gradual increases in axial muscle effort reflect muscle activity changes between aquatic and terrestrial environments observed in other elongate fishes, a modified, swimming-like axial muscle activity pattern for terrestrial locomotion may be common among elongate amphibious fishes.


Assuntos
Natação , Caminhada , Músculos , Água
3.
J Fish Biol ; 101(4): 756-779, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788929

RESUMO

Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.


Assuntos
Ecologia , Ecossistema , Animais , Humanos , Peixes/fisiologia , Cadeia Alimentar , Água Doce , Conservação dos Recursos Naturais
4.
Front Robot AI ; 8: 629713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124171

RESUMO

Animals are incredibly good at adapting to changes in their environment, a trait envied by most roboticists. Many animals use different gaits to seamlessly transition between land and water and move through non-uniform terrains. In addition to adjusting to changes in their environment, animals can adjust their locomotion to deal with missing or regenerating limbs. Salamanders are an amphibious group of animals that can regenerate limbs, tails, and even parts of the spinal cord in some species. After the loss of a limb, the salamander successfully adjusts to constantly changing morphology as it regenerates the missing part. This quality is of particular interest to roboticists looking to design devices that can adapt to missing or malfunctioning components. While walking, an intact salamander uses its limbs, body, and tail to propel itself along the ground. Its body and tail are coordinated in a distinctive wave-like pattern. Understanding how their bending kinematics change as they regrow lost limbs would provide important information to roboticists designing amphibious machines meant to navigate through unpredictable and diverse terrain. We amputated both hindlimbs of blue-spotted salamanders (Ambystoma laterale) and measured their body and tail kinematics as the limbs regenerated. We quantified the change in the body wave over time and compared them to an amphibious fish species, Polypterus senegalus. We found that salamanders in the early stages of regeneration shift their kinematics, mostly around their pectoral girdle, where there is a local increase in undulation frequency. Amputated salamanders also show a reduced range of preferred walking speeds and an increase in the number of bending waves along the body. This work could assist roboticists working on terrestrial locomotion and water to land transitions.

5.
Sci Rep ; 8(1): 4002, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507306

RESUMO

Settlement is a rapid process in many marine invertebrate species, transitioning a planktonic larva into a benthic juvenile. In indirectly developing sea urchins, this ecological transition correlates with a morphological, developmental and physiological transition (metamorphosis) during which apoptosis is essential for the resorption and remodelling of larval and juvenile structures. While settlement is initiated by environmental cues (i.e. habitat-specific or benthic substrate cues), metamorphosis is regulated by developmental endocrine signals, such as histamine (HA), thyroid hormones (THs) and nitric oxide (NO). In the purple sea urchin, Strongylocentrotus purpuratus, we found that suH1R mRNA levels increase during larval development and peak during metamorphic competence. SuH1R positive cell clusters are prominently visible in the mouth region of sea urchin larvae, but the protein appears to be expressed at low levels throughout the larval arms and epidermis. SuH1R knock-down experiments in larval stages show that the function of suH1R is in inhibiting apoptosis. Our results therefore suggest that suH1R is regulating the metamorphic transition by inhibiting apoptosis. These results provide new insights into metamorphic mechanisms and have implications for our understanding of settlement and metamorphosis in the marine environment.


Assuntos
Apoptose/fisiologia , Larva/citologia , Receptores Histamínicos/fisiologia , Strongylocentrotus purpuratus/crescimento & desenvolvimento , Animais , Ecossistema , Técnicas de Silenciamento de Genes , Metamorfose Biológica/fisiologia , Receptores Histamínicos/genética , Água do Mar , Strongylocentrotus purpuratus/anatomia & histologia
6.
R Soc Open Sci ; 3(8): 160139, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27853591

RESUMO

Directional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment. Here, we show for the first time in two echinoid species that there is a corresponding DA in the overall shape of the larva: late-stage plutei have consistently shorter arms specifically on the rudiment (left) side. We then demonstrate a mechanistic connection between the rudiment and arm length asymmetries by examining rare, anomalous purple urchin larvae that have rudiments on both the left and the right side. Our data suggest that this asymmetry is probably a broadly shared feature characterizing ontogeny in the class Echinoidea. We propose several functional hypotheses-including developmental constraints and water column stability-to account for this newly identified asymmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...