Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; : 119571, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972344

RESUMO

In recent years, it has become evident that human activities have significantly disrupted the nitrogen cycle surpassing acceptable environmental thresholds. In this study, chemical and isotopic tracers were combined with a mathematical mass balance model (EMMA), PHREEQC inverse mixing model, and statistical analyses to evaluate groundwater quality, across an area experiencing substantial human activities, with a specific focus on tracing the origin of nitrate (NO3-) with potential water mixing processes. This multi-technique approach was applied to an unconfined aquifer underlying an agricultural area setting in an inter-mountain depression (i.e., the "Pampa de Pocho Plain" in Argentina). Here, the primary identified geochemical processes occurring in the investigated groundwater system include the dissolution of carbonate salts, cation exchange, and hydrolysis of alumino-silicates along with incorporating ions from precipitation. It was observed that the chemistry of groundwater, predominantly of sodium bicarbonate with sulfate water types, is controlled by the area's geology, recharge from precipitation, and stream water infiltration originating from the surrounding hills. Chemical results reveal that 60% of groundwater samples have NO3- concentrations exceeding the regional natural background level, confirming the impact of human activities on groundwater quality. The dual plot of δ15NNO3 versus δ18ONO3 values indicates that groundwater is affected by NO3- sources overlapping manure/sewage with organic-rich soil. The mathematical EMMA model and PHREEQC inverse modeling, suggest organic-rich soil as an important source of nitrogen in the aquifer. Here, 64 % of samples exhibit a main mixture of organic-rich soil with manure, whereas 36 % of samples are affected mainly by a mixture of manure and fertilizer. This study demonstrates the utility of combining isotope tracers with mathematical modeling and statistical analyses for a better understanding of groundwater quality deterioration in situations where isotopic signatures of contamination sources overlap.

2.
Sci Total Environ ; 741: 140374, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886971

RESUMO

Nitrate (NO3-) is one of the most widespread contaminants in groundwater primarily due to agricultural activities utilizing N-containing fertilizers and the presence of animal wastes. Hydrochemical and nitrate isotope data (δ15N-NO3- and δ18O-NO3-) from the unconfined aquifer in the urban area of Del Campillo city and its surrounding rural area with different land-use types, i.e. individual sanitation systems, agricultural areas and livestock breeding facilities, were generated to investigate the impact of nitrogen pollution sources and to assess N-biogeochemical processes. The Principal Component Analysis of hydrochemical and isotopic data were used to compare the factors that control the groundwater quality and particularly the nitrate concentrations in the urban and the rural area. The results showed that nitrate pollution in the urban area of Del Campillo city originated mainly from the on-site sanitation systems and/or animal domestic wastes, whereas in the rural area nitrate pollution was mostly attributed to a combination of urea-based fertilizers and manure from livestock breeding activities. The aquifer is under oxic to suboxic conditions in the rural area and becomes suboxic in the urban area where the higher supply of organic matter consumes oxygen. As a result, denitrification was more significant in the urban area compared to the rural area, as evidenced by the higher N and O isotope enrichment factor (ε). This work will be used to benchmark the current nitrate contamination status in the region and evaluate effective planning of environmental measures and remediation strategies.

3.
Isotopes Environ Health Stud ; 56(5-6): 402-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32700642

RESUMO

The objective of this work is to enhance the conceptual hydrogeological model in the Río Cuarto River basin by using isotope and hydrochemical techniques. The precipitation pattern, as reflected in the average values of δ 2H and δ 18O in stations located in the plains and in the mountains, showed an isotope depletion from the East to the West, attributed to continental and altitude effects. Groundwater quality is mainly the result of two controlling factors: lithology and flow distances from recharge. The aquifers show fresh calcium/sodium bicarbonate water in the upper and medium basin (coarse fluvial sediments) which evolve to sodium sulphate and chloride waters in the low basin (mainly loess and fine alluvial sediments). The confined aquifer systems in the lower basin (C and D systems) averaged more negative stable isotope values, indicating that groundwater recharged during colder climatic conditions (Pleistocene period). Groundwater dating with 14C confirmed that groundwater ages range from modern to 45,000 years BP showing that as the water flows towards deeper layers and farther from the mountainous recharge area, groundwater age increases. The confined aquifers can potentially be exploited in order to partly cover different water needs but they should be managed in a sustainable way.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Isótopos/análise , Modelos Teóricos , Sustento , Argentina , Fenômenos Geológicos , Água Subterrânea/normas , Rios/química , Fatores de Tempo , Movimentos da Água , Recursos Hídricos/provisão & distribuição , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...