Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 38(15): 3725-3733, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35713506

RESUMO

MOTIVATION: Phylogenetic networks can represent non-treelike evolutionary scenarios. Current, actively developed approaches for phylogenetic network inference jointly account for non-treelike evolution and incomplete lineage sorting (ILS). Unfortunately, this induces a very high computational complexity and current tools can only analyze small datasets. RESULTS: We present NetRAX, a tool for maximum likelihood (ML) inference of phylogenetic networks in the absence of ILS. Our tool leverages state-of-the-art methods for efficiently computing the phylogenetic likelihood function on trees, and extends them to phylogenetic networks via the notion of 'displayed trees'. NetRAX can infer ML phylogenetic networks from partitioned multiple sequence alignments and returns the inferred networks in Extended Newick format. On simulated data, our results show a very low relative difference in Bayesian Information Criterion (BIC) score and a near-zero unrooted softwired cluster distance to the true, simulated networks. With NetRAX, a network inference on a partitioned alignment with 8000 sites, 30 taxa and 3 reticulations completes within a few minutes on a standard laptop. AVAILABILITY AND IMPLEMENTATION: Our implementation is available under the GNU General Public License v3.0 at https://github.com/lutteropp/NetRAX. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Filogenia , Teorema de Bayes , Alinhamento de Sequência , Funções Verossimilhança
2.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35021210

RESUMO

Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.


Assuntos
Algoritmos , Duplicação Gênica , Modelos Genéticos , Linhagem , Filogenia
3.
Mol Ecol Resour ; 22(1): 430-438, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34288531

RESUMO

A wide range of data types can be used to delimit species and various computer-based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of species delimitation (SD) under different assumptions, they are not routinely used by alpha-taxonomists. One obvious shortcoming is the lack of interoperability among the various independently developed SD programs. Given the frequent incongruences between species partitions inferred by different SD approaches, researchers applying these methods often seek to compare these alternative species partitions to evaluate the robustness of the species boundaries. This procedure is excessively time consuming at present, and the lack of a standard format for species partitions is a major obstacle. Here, we propose a standardized format, SPART, to enable compatibility between different SD tools exporting or importing partitions. This format reports the partitions and describes, for each of them, the assignment of individuals to the "inferred species". The syntax also allows support values to be optionally reported, as well as original trees and the full command lines used in the respective SD analyses. Two variants of this format are proposed, overall using the same terminology but presenting the data either optimized for human readability (matricial SPART) or in a format in which each partition forms a separate block (SPART.XML). ABGD, DELINEATE, GMYC, PTP and TR2 have already been adapted to output SPART files and a new version of LIMES has been developed to import, export, merge and split them.

4.
Mol Biol Evol ; 38(5): 1777-1791, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33316067

RESUMO

Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.


Assuntos
COVID-19/genética , Evolução Molecular , Genoma Viral , Mutação , Filogenia , SARS-CoV-2/genética , Humanos
5.
Mol Ecol Resour ; 21(1): 340-349, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32996237

RESUMO

Microbial ecology research is currently driven by the continuously decreasing cost of DNA sequencing and the improving accuracy of data analysis methods. One such analysis method is phylogenetic placement, which establishes the phylogenetic identity of the anonymous environmental sequences in a sample by means of a given phylogenetic reference tree. However, assessing the diversity of a sample remains challenging, as traditional methods do not scale well with the increasing data volumes and/or do not leverage the phylogenetic placement information. Here, we present scrapp, a highly parallel and scalable tool that uses a molecular species delimitation algorithm to quantify the diversity distribution over the reference phylogeny for a given phylogenetic placement of the sample. scrapp employs a novel approach to cluster phylogenetic placements, called placement space clustering, to efficiently perform dimensionality reduction, so as to scale on large data volumes. Furthermore, it uses the phylogeny-aware molecular species delimitation method mPTP to quantify diversity. We evaluated scrapp using both, simulated and empirical data sets. We use simulated data to verify our approach. Tests on an empirical data set show that scrapp-derived metrics can classify samples by their diversity-correlated features equally well or better than existing, commonly used approaches. scrapp is available at https://github.com/pbdas/scrapp.


Assuntos
Algoritmos , Microbiota , Filogenia , Software , Análise de Sequência de DNA
6.
Syst Biol ; 69(2): 308-324, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504977

RESUMO

Incongruence, or topological conflict, is prevalent in genome-scale data sets. Internode certainty (IC) and related measures were recently introduced to explicitly quantify the level of incongruence of a given internal branch among a set of phylogenetic trees and complement regular branch support measures (e.g., bootstrap, posterior probability) that instead assess the statistical confidence of inference. Since most phylogenomic studies contain data partitions (e.g., genes) with missing taxa and IC scores stem from the frequencies of bipartitions (or splits) on a set of trees, IC score calculation typically requires adjusting the frequencies of bipartitions from these partial gene trees. However, when the proportion of missing taxa is high, the scores yielded by current approaches that adjust bipartition frequencies in partial gene trees differ substantially from each other and tend to be overestimates. To overcome these issues, we developed three new IC measures based on the frequencies of quartets, which naturally apply to both complete and partial trees. Comparison of our new quartet-based measures to previous bipartition-based measures on simulated data shows that: (1) on complete data sets, both quartet-based and bipartition-based measures yield very similar IC scores; (2) IC scores of quartet-based measures on a given data set with and without missing taxa are more similar than the scores of bipartition-based measures; and (3) quartet-based measures are more robust to the absence of phylogenetic signal and errors in phylogenetic inference than bipartition-based measures. Additionally, the analysis of an empirical mammalian phylogenomic data set using our quartet-based measures reveals the presence of substantial levels of incongruence for numerous internal branches. An efficient open-source implementation of these quartet-based measures is freely available in the program QuartetScores (https://github.com/lutteropp/QuartetScores).


Assuntos
Classificação/métodos , Filogenia , Animais , Biologia Computacional , Simulação por Computador , Mamíferos/classificação
7.
Bioinformatics ; 36(7): 2280-2281, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755898

RESUMO

MOTIVATION: Recently, Lemoine et al. suggested the transfer bootstrap expectation (TBE) branch support metric as an alternative to classical phylogenetic bootstrap support for taxon-rich datasets. However, the original TBE implementation in the booster tool is compute- and memory-intensive. RESULTS: We developed a fast and memory-efficient TBE implementation. We improve upon the original algorithm by Lemoine et al. via several algorithmic and technical optimizations. On empirical as well as on random tree sets with varying taxon counts, our implementation is up to 480 times faster than booster. Furthermore, it only requires memory that is linear in the number of taxa, which leads to 10× to 40× memory savings compared with booster. AVAILABILITY AND IMPLEMENTATION: Our implementation has been partially integrated into pll-modules and RAxML-NG and is available under the GNU Affero General Public License v3.0 at https://github.com/ddarriba/pll-modules and https://github.com/amkozlov/raxml-ng. The parallel version that also computes additional TBE-related statistics is available at: https://github.com/lutteropp/raxml-ng/tree/tbe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...