Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 28(5): 369-374, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37833008

RESUMO

One result of the Covid-19 pandemic has been an increased awareness of IVT mRNA vaccines and the speed at which they can be produced for disease outbreaks. Currently the only approved IVT mRNA therapeutics are the Covid-19 vaccines, however IVT mRNA is being investigated for other non-Covid prophylactic vaccines, therapeutics, and therapeutic vaccines. IVT mRNAs can range from less than 100 nt in length to longer than 9,000 nt. When producing any IVT mRNA, quality control of the IVT mRNA is essential to ensure that the product is the correct length and does not contain truncated or degraded mRNA. Capillary gel electrophoresis provides high resolution separations of the IVT mRNA of interest from the degraded or truncated impurities allowing for the accurate purity assessment of IVT mRNA. Specialized capillary electrophoresis gels can also be used to provide analysis of purified poly(A) tails enabling characterization of multiple Critical Quality Attributes on a single platform. Here we describe methods for the purity assessment of IVT mRNAs through either 6,000 or 9,000 nt and determination of poly(A) tail length using different capillary gel electrophoresis methods.


Assuntos
Vacinas contra COVID-19 , Pandemias , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eletroforese Capilar/métodos
2.
Biotechniques ; 62(6): 268-274, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625156

RESUMO

The most common gene editing methods, such as CRISPR, involve random repair of an induced double-stranded DNA break through the non-homologous end joining (NHEJ) repair pathway, resulting in small insertions/deletions. In diploid cells, these mutations can take on one of three zygosities: monoallelic, diallelic heterozygous, or diallelic homozygous. While many advances have been made in CRISPR delivery systems and gene editing efficiency, little work has been done to streamline detection of gene editing events. The only current method to determine the zygosity of an edited gene in a diploid organism is DNA sequencing, which is costly and time-consuming. Here, we describe the development of a T7 endonuclease I (T7EI)-based heteroduplex cleavage assay, along with statistical models relating the percentage of cleaved DNA to the zygosity of a mutation, that provides a rapid screening step prior to DNA sequencing. By isolating candidates likely to contain the desired zygosity for the edited gene, our screening method can decrease the number of clones requiring DNA sequencing.


Assuntos
Sistemas CRISPR-Cas , Análise Mutacional de DNA/métodos , DNA de Plantas/genética , Diploide , Edição de Genes/métodos , Mutação , Oryza/genética , Alelos , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , DNA de Plantas/metabolismo , Desoxirribonuclease I/metabolismo , Modelos Estatísticos , Oryza/citologia
3.
Plant Physiol ; 172(2): 889-900, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506241

RESUMO

Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoid-like proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Homeostase , Oxirredutases/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Oxirredutases/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina C-Palmitoiltransferase/genética
4.
Subcell Biochem ; 86: 249-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023239

RESUMO

Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.


Assuntos
Plantas/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Estrutura Molecular , Fosforilação , Esfingolipídeos/biossíntese , Esfingolipídeos/química , Esfingolipídeos/fisiologia
5.
Biochem J ; 473(5): 593-603, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26635357

RESUMO

Ceramide makes up the acyl-backbone of sphingolipids and plays a central role in determining the function of these essential membrane lipids. In Arabidopsis, the varied chemical composition of ceramide is determined by the specificity of three different isoforms of ceramide synthase, denoted LAG one homologue 1, -2 and -3 (LOH1, LOH2 and LOH3), for a range of long-chain base (LCB) and acyl-CoA substrates. The contribution of each of these isoforms to the synthesis of ceramide was investigated by in vitro ceramide synthase assays. The plant LCB phytosphingosine was efficiently used by the LOH1 and LOH3 isoforms, with LOH1 having the lowest Km for the LCB substrate of the three isoforms. In contrast, sphinganine was used efficiently only by the LOH2 isoform. Acyl-CoA specificity was also distinguished between the three isoforms with LOH2 almost completely specific for palmitoyl-CoA whereas the LOH1 isoform showed greatest activity with lignoceroyl- and hexacosanoyl-CoAs. Interestingly, unsaturated acyl-CoAs were not used efficiently by any isoform whereas unsaturated LCB substrates were preferred by LOH2 and 3. Fumonisin B1 (FB1) is a general inhibitor of ceramide synthases but LOH1 was found to have a much lower Ki than the other isoforms pointing towards the origin of FB1 sensitivity in plants. Overall, the data suggest distinct roles and modes of regulation for each of the ceramide synthases in Arabidopsis sphingolipid metabolism.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Fumonisinas/química , Esfingosina N-Aciltransferase/antagonistas & inibidores , Acil Coenzima A/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ensaios Enzimáticos , Hidroxilação , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Cinética , Microssomos/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina N-Aciltransferase/química , Esfingosina N-Aciltransferase/genética , Especificidade por Substrato
6.
Plant J ; 84(1): 188-201, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26313010

RESUMO

Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Glucosilceramidas/metabolismo , Arabidopsis/metabolismo , Sobrevivência Celular/fisiologia
7.
Plant Physiol ; 169(2): 1108-17, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26276842

RESUMO

Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance for improved plant performance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Micotoxinas/toxicidade , Oxirredutases/metabolismo , Esfingolipídeos/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Morte Celular , Fumonisinas/toxicidade , Regulação da Expressão Gênica de Plantas , Mutação , Oxirredutases/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo
8.
Phytochemistry ; 115: 121-9, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-25794895

RESUMO

Although sphingolipids are essential for male gametophytic development in Arabidopsis thaliana, sphingolipid composition and biosynthetic gene expression have not been previously examined in pollen. In this report, electrospray ionization (ESI)-MS/MS was applied to characterization of sphingolipid compositional profiles in pollen isolated from wild type Arabidopsis Col-0 and a long-chain base (LCB) Δ4 desaturase mutant. Pollen fractions were highly enriched in glucosylceramides (GlcCer) relative to levels previously reported in leaves. Accompanying the loss of the Δ4 unsaturated LCB sphingadiene (d18:2) in the Δ4 desaturase mutant was a 50% reduction in GlcCer concentrations. In addition, pollen glycosylinositolphosphoceramides (GIPCs) were found to have a complex array of N-acetyl-glycosylated GIPCs, including species with up to three pentose units that were absent from leaf GIPCs. Underlying the distinct sphingolipid composition of pollen, genes for key biosynthetic enzymes for GlcCer and d18:2 synthesis and metabolism were more highly expressed in pollen than in leaves or seedlings, including genes for GlcCer synthase (GCS), sphingoid base C-4 hydroxylase 2 (SBH2), LCB Δ8 desaturases (SLD1 and SLD2), and LOH2 ceramide synthase (LOH2). Overall, these findings indicate strikingly divergent sphingolipid metabolism between pollen and leaves in Arabidopsis, the significance of which remains to be determined.


Assuntos
Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Pólen/metabolismo , Esfingolipídeos/metabolismo , Glucosilceramidas/análise
9.
Anal Biochem ; 478: 96-101, 2015 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-25725359

RESUMO

The acyl composition of sphingolipids is determined by the specificity of the enzyme ceramide synthase (EC 2.3.1.24). Ceramide contains a long-chain base (LCB) linked to a variety of fatty acids to produce a lipid class with potentially hundreds of structural variants. An optimized procedure for the assay of ceramide synthase in yeast microsomes is reported that uses mass spectrometry to detect any possible LCB and fatty acid combination synthesized from unlabeled substrates provided in the reaction. The assay requires the delivery of substrates with bovine serum albumin for maximum activity within defined limits of substrate concentration and specific methods to stop the reaction and extract the lipid that avoid the non-enzymatic synthesis of ceramide. The activity of ceramide synthase in yeast microsomes is demonstrated with the four natural LCBs found in yeast along with six saturated and two unsaturated fatty acyl-coenzyme As from 16 to 26 carbons in length. The procedure allows for the determination of substrate specificity and kinetic parameters toward natural substrates for ceramide synthase from potentially any organism.


Assuntos
Ensaios Enzimáticos/métodos , Espectrometria de Massas/métodos , Oxirredutases/metabolismo , Saccharomyces cerevisiae/enzimologia , Esfingolipídeos/metabolismo , Ceramidas/análise , Ceramidas/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/análise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...