Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 7)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32127378

RESUMO

Mosquitoes spread deadly diseases that impact millions of people every year. Understanding mosquito physiology and behavior is vital for public health and disease prevention. However, many important questions remain unanswered in the field of mosquito neuroethology, particularly in our understanding of the larval stage. In this study, we investigate the innate exploration behavior of six different species of disease vector mosquito larvae. We show that these species exhibit strikingly different movement paths, corresponding to a wide range of exploration behaviors. We also investigated the response of each species to an appetitive food cue, aversive cue or neutral control. In contrast to the large differences in exploration behavior, all species appeared to gather near preferred cues through random aggregation rather than directed navigation, and exhibited slower speeds once encountering food patches. Our results identify key behavioral differences among important disease vector species, and suggest that navigation and exploration among even closely related mosquito species may be much more distinct than previously thought.


Assuntos
Aedes , Anopheles , Culex , Animais , Larva , Mosquitos Vetores
2.
Proc Biol Sci ; 286(1915): 20191495, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31744443

RESUMO

Mosquitoes are prolific disease vectors that affect public health around the world. Although many studies have investigated search strategies used by host-seeking adult mosquitoes, little is known about larval search behaviour. Larval behaviour affects adult body size and fecundity, and thus the capacity of individual mosquitoes to find hosts and transmit disease. Understanding vector survival at all life stages is crucial for improving disease control. In this study, we use experimental and computational methods to investigate the chemical ecology and search behaviour of Aedes aegypti mosquito larvae. We first show that larvae do not respond to several olfactory cues used by adult Ae. aegypti to assess larval habitat quality, but perceive microbial RNA as a potent foraging attractant. Second, we demonstrate that Ae. aegypti larvae use chemokinesis, an unusual search strategy, to navigate chemical gradients. Finally, we use computational modelling to demonstrate that larvae respond to starvation pressure by optimizing exploration behaviour-possibly critical for exploiting limited larval habitat types. Our results identify key characteristics of foraging behaviour in an important disease vector mosquito. In addition to implications for better understanding and control of disease vectors, this work establishes mosquito larvae as a tractable model for chemosensory behaviour and navigation.


Assuntos
Aedes/fisiologia , Quimiotaxia , Mosquitos Vetores/fisiologia , Navegação Espacial , Aedes/crescimento & desenvolvimento , Animais , Biologia Computacional , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento
3.
BMC Neurosci ; 20(1): 27, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208328

RESUMO

BACKGROUND: The mosquito Aedes aegypti has a wide variety of sensory pathways that have supported its success as a species as well as a highly competent vector of numerous debilitating infectious pathogens. Investigations into mosquito sensory systems and their effects on behavior are valuable resources for the advancement of mosquito control strategies. Numerous studies have elucidated key aspects of mosquito sensory systems, however there remains critical gaps within the field. In particular, compared to that of the adult form, there has been a lack of studies directed towards the immature life stages. Additionally, although numerous studies have pinpointed specific sensory receptors as well as responding motor outputs, there has been a lack of studies able to monitor both concurrently. RESULTS: To begin filling aforementioned gaps, here we engineered Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s. Using this strain, combined with advanced microscopy, we simultaneously measured live stimulus-evoked calcium responses in both neuronal and muscle cells with a wide spatial range and resolution. CONCLUSIONS: By coupling in vivo live calcium imaging with behavioral assays we were able to gain functional insights into how stimulus-evoked neural and muscle activities are represented, modulated, and transformed in mosquito larvae enabling us to elucidate mosquito sensorimotor properties important for life-history-specific foraging strategies.


Assuntos
Aedes/genética , Cálcio/fisiologia , Estágios do Ciclo de Vida/fisiologia , Neurônios/fisiologia , Percepção Olfatória/fisiologia , Natação/fisiologia , Animais , Animais Geneticamente Modificados/fisiologia , Larva/fisiologia , Músculos/fisiologia , Optogenética
4.
Curr Opin Insect Sci ; 20: 75-83, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28602240

RESUMO

Mosquitoes transmit many debilitating diseases including malaria, dengue and Zika. Odors mediate behaviors that directly impact disease transmission (blood-feeding) as well as life history events that contribute to mosquito survival and fitness (mating and oviposition, nectar foraging, larval foraging and predator avoidance). In addition to innate olfaction-mediated behaviors, mosquitoes rely on olfactory experience throughout their life to inform advantageous choices in many of these important behaviors. Previous reviews have addressed either the chemical ecology of mosquitoes, or olfactory-driven behaviors including host-feeding or oviposition. Adding to this literature, we use a holistic life history perspective to integrate and compare innate and learned olfactory behavior at various stages of mosquito development.


Assuntos
Culicidae/fisiologia , Aprendizagem , Olfato/fisiologia , Animais , Culicidae/crescimento & desenvolvimento , Comportamento Alimentar/fisiologia , Estágios do Ciclo de Vida , Mosquitos Vetores/fisiologia
5.
J Exp Biol ; 217(Pt 13): 2321-30, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24737761

RESUMO

Olfactory learning in blood-feeding insects, such as mosquitoes, could play an important role in host preference and disease transmission. However, standardised protocols allowing testing of their learning abilities are currently lacking, and how different olfactory stimuli are learned by these insects remains unknown. Using a Pavlovian conditioning paradigm, we trained individuals and groups of Aedes aegypti mosquitoes to associate an odorant conditioned stimulus (CS) with a blood-reinforced thermal stimulus (unconditioned stimulus; US). Results showed, first, that mosquitoes could learn the association between L-lactic acid and the US, and retained the association for at least 24 h. Second, the success of olfactory conditioning was dependent upon the CS--some odorants that elicited indifferent responses in naïve mosquitoes, such as L-lactic acid and 1-octen-3-ol, were readily learned, whereas others went from aversive to attractive after training (Z-3-hexen-1-ol) or were untrainable (ß-myrcene and benzyl alcohol). Third, we examined whether mosquitoes' ability to learn could interfere with the action of the insect repellent DEET. Results demonstrated that pre-exposure and the presence of DEET in the CS reduced the aversive effects of DEET. Last, the nature of the formed memories was explored. Experiments using cold-shock treatments within the first 6 h post-training (for testing anaesthesia-resistant memory) and a protein synthesis inhibitor (cycloheximide; to disrupt the formation of long-term memory) both affected mosquitoes' performances. Together, these results show that learning is a crucial component in odour responses in A. aegypti, and provide the first evidence for the functional role of different memory traces in these responses.


Assuntos
Aedes/fisiologia , Dióxido de Carbono/metabolismo , Ácido Láctico/metabolismo , Odorantes , Animais , Condicionamento Clássico , DEET/farmacologia , Feminino , Humanos , Repelentes de Insetos/farmacologia , Aprendizagem , Memória/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...