Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962449

RESUMO

Metal hexafluorides hydrolyze at ambient temperature to deposit compounds having fluorine-to-oxygen ratios that depend upon the identity of the metal. Uranium-hexafluoride hydrolysis, for example, deposits uranyl fluoride (UO2F2), whereas molybdenum hexafluoride (MoF6) and tungsten hexafluoride deposit trioxides. Here, we pursue general strategies enabling the prediction of depositing compounds resulting from multi-step gas-phase reactions. To compare among the three metal-hexafluoride hydrolyses, we first investigate the mechanism of MoF6 hydrolysis using hybrid density functional theory (DFT). Intermediates are then validated by performing anharmonic vibrational simulations and comparing with infrared spectra [McNamara et al., Phys. Chem. Chem. Phys. 25, 2990 (2023)]. Conceptual DFT, which is leveraged here to quantitatively evaluate site-specific electrophilicity and nucleophilicity metrics, is found to reliably predict qualitative deposition propensities for each intermediate. In addition to the nucleophilic potential of the oxygen ligands, several other contributing characteristics are discussed, including amphoterism, polyvalency, fluxionality, steric hindrance, dipolar strength, and solubility. To investigate the structure and composition of pre-nucleation clusters, an automated workflow is presented for the simulation of particle growth. The workflow entails a conformer search at the density functional tight-binding level, structural refinement at the hybrid DFT level, and computation of a composite free-energy profile. Such profiles can be used to estimate particle nucleation kinetics. Droplet formation is also considered, which helps to rationalize the different UO2F2 particle morphologies observed under varying levels of humidity. Development of predictive methods for simulating physical and chemical deposition processes is important for the advancement of material manufacturing involving coatings and thin films.

2.
Phys Chem Chem Phys ; 24(16): 9634-9647, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35404371

RESUMO

Depleted uranium hexafluoride (UF6), a stockpiled byproduct of the nuclear fuel cycle, reacts readily with atmospheric humidity, but the mechanism is poorly understood. We compare several potential initiation steps at a consistent level of theory, generating underlying structures and vibrational modes using hybrid density functional theory (DFT) and computing relative energies of stationary points with double-hybrid (DH) DFT. A benchmark comparison is performed to assess the quality of DH-DFT data using reference energy differences obtained using a complete-basis-limit coupled-cluster (CC) composite method. The associated large-basis CC computations were enabled by a new general-purpose pseudopotential capability implemented as part of this work. Dispersion-corrected parameter-free DH-DFT methods, namely PBE0-DH-D3(BJ) and PBE-QIDH-D3(BJ), provided mean unsigned errors within chemical accuracy (1 kcal mol-1) for a set of barrier heights corresponding to the most energetically favorable initiation steps. The hydrolysis mechanism is found to proceed via intermolecular hydrogen transfer within van der Waals complexes involving UF6, UF5OH, and UOF4, in agreement with previous studies, followed by the formation of a previously unappreciated dihydroxide intermediate, UF4(OH)2. The dihydroxide is predicted to form under both kinetic and thermodynamic control, and, unlike the alternate pathway leading to the UO2F2 monomer, its reaction energy is exothermic, in agreement with observation. Finally, harmonic and anharmonic vibrational simulations are performed to reinterpret literature infrared spectroscopy in light of this newly identified species.

3.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321259

RESUMO

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

4.
J Chem Phys ; 148(17): 174309, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29739206

RESUMO

Accurate optical characterization of the closo-Si12C12 molecule is important to guide experimental efforts toward the synthesis of nano-wires, cyclic nano-arrays, and related array structures, which are anticipated to be robust and efficient exciton materials for opto-electronic devices. Working toward calibrated methods for the description of closo-Si12C12 oligomers, various electronic structure approaches are evaluated for their ability to reproduce measured optical transitions of the SiC2, Si2Cn (n = 1-3), and Si3Cn (n = 1, 2) clusters reported earlier by Steglich and Maier [Astrophys. J. 801, 119 (2015)]. Complete-basis-limit equation-of-motion coupled-cluster (EOMCC) results are presented and a comparison is made between perturbative and renormalized non-iterative triples corrections. The effect of adding a renormalized correction for quadruples is also tested. Benchmark test sets derived from both measurement and high-level EOMCC calculations are then used to evaluate the performance of a variety of density functionals within the time-dependent density functional theory (TD-DFT) framework. The best-performing functionals are subsequently applied to predict valence TD-DFT excitation energies for the lowest-energy isomers of SinC and Sin-1C7-n (n = 4-6). TD-DFT approaches are then applied to the SinCn (n = 4-12) clusters and unique spectroscopic signatures of closo-Si12C12 are discussed. Finally, various long-range corrected density functionals, including those from the CAM-QTP family, are applied to a charge-transfer excitation in a cyclic (Si4C4)4 oligomer. Approaches for gauging the extent of charge-transfer character are also tested and EOMCC results are used to benchmark functionals and make recommendations.

5.
J Chem Phys ; 148(16): 164102, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716199

RESUMO

We study the performance of the two-determinant (TD) coupled-cluster (CC) method which, unlike conventional ground-state single-reference (SR) CC methods, can, in principle, provide a naturally spin-adapted treatment of the lowest-lying open-shell singlet (OSS) and triplet electronic states. Various choices for the TD-CC reference orbitals are considered, including those generated by the multi-configurational self-consistent field method. Comparisons are made with the results of high-level SR-CC, equation-of-motion (EOM) CC, and multi-reference EOM calculations performed on a large test set of over 100 molecules with low-lying OSS states. It is shown that in cases where the EOMCC reference function is poorly described, TD-CC can provide a significantly better quantitative description of OSS total energies and OSS-triplet splittings.

6.
J Chem Phys ; 147(18): 184101, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141413

RESUMO

Coupled cluster (CC) theory is widely accepted as the most accurate and generally applicable approach in quantum chemistry. CC calculations are usually performed with single Slater-determinant references, e.g., canonical Hartree-Fock (HF) wavefunctions, though any single determinant can be used. This is an attractive feature because typical CC calculations are straightforward to apply, as there is no potentially ambiguous user input required. On the other hand, there can be concern that CC approximations give unreliable results when the reference determinant provides a poor description of the system of interest, i.e., when the HF or any other single determinant ground state has a relatively low weight in the full CI expansion. However, in many cases, the reported "failures" of CC can be attributed to an unfortunate choice of reference determinant, rather than intrinsic shortcomings of CC itself. This is connected to well-known effects like spin-contamination, wavefunction instability, and symmetry-breaking. In this contribution, a particularly difficult singlet/triplet splitting problem in two phenyldinitrene molecules is investigated, where CC with singles, doubles and perturbative triples [CCSD(T)] was reported to give poor results. This is analyzed by using different reference determinants for CCSD(T), as well as performing higher level CCSDT-3 and CCSDT calculations. We show that doubly electron attached and doubly ionized equation-of-motion (DEA/DIP-EOM) approaches are powerful alternatives for treating such systems. These are operationally single-determinant methods that adequately take the multi-reference nature of these molecules into account. Our results indicate that CC remains a powerful tool for describing systems with both static correlation and dynamic correlation, when pitfalls associated with the choice of the reference determinant are avoided.

7.
J Chem Phys ; 145(2): 024312, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27421410

RESUMO

The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a significant role in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si12C12 isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.

8.
J Chem Phys ; 140(1): 014303, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24410225

RESUMO

We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

9.
J Comput Chem ; 34(12): 987-1004, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-23335227

RESUMO

The methylcobalamin cofactor (MeCbl), which is one of the biologically active forms of vitamin B12, has been the subject of many spectroscopic and theoretical investigations. Traditionally, the lowest-energy part of the photoabsorption spectrum of MeCbl (the so-called α/ß band) has been interpreted as an S0→S1 electronic transition dominated by π→π* excitations associated with the C=C stretching of the corrin ring. However, a more quantitative band-shape analysis of the α/ß spectral region, along with circular dichroism (CD), magnetic CD, and resonance Raman data, has revealed the presence of a second electronic transition that involves the Co-C(Me) bond weakening. Conversely, the lowest-energy excitations based on transient absorption spectroscopy measurements have been interpreted as metal-to-ligand charge transfer (MLCT) transitions. To resolve the existing controversy about the interpretation of the S1 state of MeCbl, calculations have been performed using two independent ab initio wavefunction-based methods. These include the modified variant of the second-order multiconfigurational quasi-degenerate perturbation theory (MC-XQDPT2), using complete active space self-consistent field orbitals, and the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approach using restricted Hartree-Fock orbitals. It is shown that both ab initio methods provide a consistent description of the S1 state as having an MLCT character. In addition, the performance of different types of functionals, including hybrid (B3LYP, MPW1PW91, TPSSh), generalized-gradient-approximation-type (GGA-type) (BP86, BLYP, MPWPW91), meta-GGA (TPSS), and range-separated (CAM-B3LYP, LC-BLYP) approaches, has been examined and the results of the corresponding time-dependent density functional theory calculations have been benchmarked against the MC-XQDPT2 and EOM-CCSD data. The hybrid functionals support the interpretation in which the S1 state represents a π→π* transition localized on corrin, while pure GGA, meta-GGA, and LC-BLYP functionals produce results consistent with the MLCT assignment.


Assuntos
Elétrons , Teoria Quântica , Vitamina B 12/análogos & derivados , Estrutura Molecular , Vitamina B 12/química
10.
J Phys Chem A ; 113(19): 5786-99, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19374412

RESUMO

The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals gives accurate forward barrier heights; however, it significantly underestimates reaction energies.

11.
J Chem Phys ; 128(15): 154116, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18433199

RESUMO

The recently proposed potential energy surface (PES) extrapolation scheme, which predicts smooth molecular PESs corresponding to larger basis sets from the relatively inexpensive calculations using smaller basis sets by scaling electron correlation energies [A. J. C. Varandas and P. Piecuch, Chem. Phys. Lett. 430, 448 (2006)], is applied to the PESs associated with the conrotatory and disrotatory isomerization pathways of bicyclo[1.1.0]butane to buta-1,3-diene. The relevant electronic structure calculations are performed using the completely renormalized coupled-cluster method with singly and doubly excited clusters and a noniterative treatment of connected triply excited clusters, termed CR-CC(2,3), which is known to provide a highly accurate description of chemical reaction profiles involving biradical transition states and intermediates. A comparison with the explicit CR-CC(2,3) calculations using the large correlation-consistent basis set of the cc-pVQZ quality shows that the cc-pVQZ PESs obtained by the extrapolation from the smaller basis set calculations employing the cc-pVDZ and cc-pVTZ basis sets are practically identical, to within fractions of a millihartree, to the true cc-pVQZ PESs. It is also demonstrated that one can use a similar extrapolation procedure to accurately predict the complete basis set (CBS) limits of the calculated PESs from the results of smaller basis set calculations at a fraction of the effort required by the conventional pointwise CBS extrapolations.

12.
J Chem Phys ; 128(4): 044108, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247931

RESUMO

The CCSD, CCSD(T), and CR-CC(2,3) coupled cluster methods, combined with five triple-zeta basis sets, namely, MG3S, aug-cc-pVTZ, aug-cc-pV(T+d)Z, aug-cc-pCVTZ, and aug-cc-pCV(T+d)Z, are tested against the DBH24 database of diverse reaction barrier heights. The calculations confirm that the inclusion of connected triple excitations is essential to achieving high accuracy for thermochemical kinetics. They show that various noniterative ways of incorporating connected triple excitations in coupled cluster theory, including the CCSD(T) approach, the full CR-CC(2,3) method, and approximate variants of CR-CC(2,3) similar to the triples corrections of the CCSD(2) approaches, are all about equally accurate for describing the effects of connected triply excited clusters in studies of activation barriers. The effect of freezing core electrons on the results of the CCSD, CCSD(T), and CR-CC(2,3) calculations for barrier heights is also examined. It is demonstrated that to include core correlation most reliably, a basis set including functions that correlate the core and that can treat core-valence correlation is required. On the other hand, the frozen-core approximation using valence-optimized basis sets that lead to relatively small computational costs of CCSD(T) and CR-CC(2,3) calculations can achieve almost as high accuracy as the analogous fully correlated calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...