Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625258

RESUMO

Acinetobacter baumannii hospital infections are difficult to treat due to the rapid emergence of multidrug-resistant (MDR) strains. In addition, A. baumannii can survive in numerous adverse environments, including in the presence of common hospital antiseptics. We hypothesized that in addition to accumulating drug resistance determinants, MDR A. baumannii strains also accumulate mutations that allow for greater microbicide tolerance when compared to pan-susceptible (PS) strains. To test this hypothesis, we compared the survival of five MDR and five PS patient isolates when exposed to bleach, ethanol, quaternary ammonium compounds, chlorhexidine gluconate, and povidone. We evaluated bacteria in a free-living planktonic state and under biofilm conditions. Each disinfectant eliminated 99.9% of planktonic bacteria, but this was not the case for bacterial biofilms. Next, we characterized strains for the presence of the known microbicide-resistance genes cepA, qacEΔ1, qacE, and qacA. MDR strains did not survive more than PS strains in the presence of microbicides, but microbicide-resistant strains had higher survival rates under some conditions. Interestingly, the PS strains were more likely to possess microbicide-resistance genes. Microbicide resistance remains an important topic in healthcare and may be independent of antimicrobial resistance. Hospitals should consider stricter isolation precautions that take pan-susceptible strains into account.

2.
mSystems ; 6(4): e0042221, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427523

RESUMO

Nε-lysine acetylation is an important, dynamic regulatory posttranslational modification (PTM) that is common in bacteria. Protein acetylomes have been characterized for more than 30 different species, and it is known that acetylation plays important regulatory roles in many essential biological processes. The levels of acetylation are enzymatically controlled by the opposing actions of lysine acetyltransferases and deacetylases. In bacteria, a second mechanism of acetylation exists and occurs via an enzyme-independent manner using the secondary metabolite acetyl-phosphate. Nonenzymatic acetylation accounts for global low levels of acetylation. Recently, studies concerning the role of protein acetylation in bacterial virulence have begun. Acetylated virulence factors have been identified and further characterized. The roles of the enzymes that acetylate and deacetylate proteins in the establishment of infection and biofilm formation have also been investigated. In this review, we discuss the acetylomes of human bacterial pathogens. We highlight examples of known acetylated virulence proteins and examine how they affect survival in the host. Finally, we discuss how acetylation might influence host-pathogen interactions and look at the contribution of acetylation to antimicrobial resistance.

3.
Front Microbiol ; 12: 782815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111139

RESUMO

Bacillus subtilis produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults. The α/ß-type small acid-soluble proteins (SASPs) coat the spore chromosome, which leads to condensation and protection from such insults. The histone-like protein HBsu has been implicated in the packaging of the spore chromosome and is believed to be important in modulating SASP-mediated alterations to the DNA, including supercoiling and stiffness. Previously, we demonstrated that HBsu is acetylated at seven lysine residues, and one physiological function of acetylation is to regulate chromosomal compaction. Here, we investigate if the process of sporulation or the resistance properties of mature spores are influenced by the acetylation state of HBsu. Using our collection of point mutations that mimic the acetylated and unacetylated forms of HBsu, we first determined if acetylation affects the process of sporulation, by determining the overall sporulation frequencies. We found that specific mutations led to decreases in sporulation frequency, suggesting that acetylation of HBsu at some sites, but not all, is required to regulate the process of sporulation. Next, we determined if the spores produced from the mutant strains were more susceptible to heat, ultraviolet (UV) radiation and formaldehyde exposure. We again found that altering acetylation at specific sites led to less resistance to these stresses, suggesting that proper HBsu acetylation is important for chromosomal packaging and protection in the mature spore. Interestingly, the specific acetylation patterns were different for the sporulation process and resistance properties of spores, which is consistent with the notion that a histone-like code exists in bacteria. We propose that specific acetylation patterns of HBsu are required to ensure proper chromosomal arrangement, packaging, and protection during the process of sporulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...