Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 15: 622535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994975

RESUMO

Introduction: Pathological tremor is the most common motor disorder in adults and characterized by involuntary, rhythmic muscular contraction leading to shaking movements in one or more parts of the body. Functional Electrical Stimulation (FES) and biomechanical loading using wearable orthoses have emerged as effective and non-invasive methods for tremor suppression. A variety of upper-limb orthoses for tremor suppression have been introduced; however, a systematic review of the mechanical design, algorithms for tremor extraction, and the experimental design is still missing. Methods: To address this gap, we applied a standard systematic review methodology to conduct a literature search in the PubMed and PMC databases. Inclusion criteria and full-text access eligibility were used to filter the studies from the search results. Subsequently, we extracted relevant information, such as suppression mechanism, system weights, degrees of freedom (DOF), algorithms for tremor estimation, experimental settings, and the efficacy. Results: The results show that the majority of tremor-suppression orthoses are active with 47% prevalence. Active orthoses are also the heaviest with an average weight of 561 ± 467 g, followed by semi-active 486 ± 395 g, and passive orthoses 191 ± 137 g. Most of the orthoses only support one DOF (54.5%). Two-DOF and three-DOF orthoses account for 33 and 18%, respectively. The average efficacy of tremor suppression using wearable orthoses is 83 ± 13%. Active orthoses are the most efficient with an average efficacy of 83 ± 8%, following by the semi-active 77 ± 19%, and passive orthoses 75 ± 12%. Among different experimental setups, bench testing shows the highest efficacy at 95 ± 5%, this value dropped to 86 ± 8% when evaluating with tremor-affected subjects. The majority of the orthoses (92%) measured voluntary and/or tremorous motions using biomechanical sensors (e.g., IMU, force sensor). Only one system was found to utilize EMG for tremor extraction. Conclusions: Our review showed an improvement in efficacy of using robotic orthoses in tremor suppression. However, significant challenges for the translations of these systems into clinical or home use remain unsolved. Future challenges include improving the wearability of the orthoses (e.g., lightweight, aesthetic, and soft structure), and user control interfaces (i.e., neural machine interface). We also suggest addressing non-technical challenges (e.g., regulatory compliance, insurance reimbursement) to make the technology more accessible.

2.
Sci Rep ; 10(1): 4372, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152333

RESUMO

Previous studies of Brain Computer Interfaces (BCI) based on scalp electroencephalography (EEG) have demonstrated the feasibility of decoding kinematics for lower limb movements during walking. In this computational study, we investigated offline decoding analysis with different models and conditions to assess how they influence the performance and stability of the decoder. Specifically, we conducted three computational decoding experiments that investigated decoding accuracy: (1) based on delta band time-domain features, (2) when downsampling data, (3) of different frequency band features. In each experiment, eight different decoder algorithms were compared including the current state-of-the-art. Different tap sizes (sample window sizes) were also evaluated for a real-time applicability assessment. A feature of importance analysis was conducted to ascertain which features were most relevant for decoding; moreover, the stability to perturbations was assessed to quantify the robustness of the methods. Results indicated that generally the Gated Recurrent Unit (GRU) and Quasi Recurrent Neural Network (QRNN) outperformed other methods in terms of decoding accuracy and stability. Previous state-of-the-art Unscented Kalman Filter (UKF) still outperformed other decoders when using smaller tap sizes, with fast convergence in performance, but occurred at a cost to noise vulnerability. Downsampling and the inclusion of other frequency band features yielded overall improvement in performance. The results suggest that neural network-based decoders with downsampling or a wide range of frequency band features could not only improve decoder performance but also robustness with applications for stable use of BCIs.


Assuntos
Algoritmos , Eletroencefalografia , Marcha , Aprendizado de Máquina , Redes Neurais de Computação , Interfaces Cérebro-Computador , Humanos
3.
Sci Data ; 5: 180133, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989591

RESUMO

Human locomotion is a complex process that requires the integration of central and peripheral nervous signalling. Understanding the brain's involvement in locomotion is challenging and is traditionally investigated during locomotor imagination or observation. However, stationary imaging methods lack the ability to infer information about the peripheral and central signalling during actual task execution. In this report, we present a dataset containing simultaneously recorded electroencephalography (EEG), lower-limb electromyography (EMG), and full body motion capture recorded from ten able-bodied individuals. The subjects completed an average of twenty trials on an experimental gait course containing level-ground, ramps, and stairs. We recorded 60-channel EEG from the scalp and 4-channel EOG from the face and temples. Surface EMG was recorded from six muscle sites bilaterally on the thigh and shank. The motion capture system consisted of seventeen wireless IMUs, allowing for unconstrained ambulation in the experimental space. In this report, we present the rationale for collecting these data, a detailed explanation of the experimental setup, and a brief validation of the data quality.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia , Eletromiografia , Locomoção , Encéfalo/diagnóstico por imagem , Marcha , Humanos , Músculo Esquelético/fisiologia , Neuroimagem , Caminhada
4.
Sci Data ; 5: 180074, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29688217

RESUMO

We present a mobile brain-body imaging (MoBI) dataset acquired during treadmill walking in a brain-computer interface (BCI) task. The data were collected from eight healthy subjects, each having three identical trials. Each trial consisted of three conditions: standing, treadmill walking, and treadmill walking with a closed-loop BCI. During the BCI condition, subjects used their brain activity to control a virtual avatar on a screen to walk in real-time. Robust procedures were designed to record lower limb joint angles (bilateral hip, knee, and ankle) using goniometers synchronized with 60-channel scalp electroencephalography (EEG). Additionally, electrooculogram (EOG), EEG electrodes impedance, and digitized EEG channel locations were acquired to aid artifact removal and EEG dipole-source localization. This dataset is unique in that it is the first published MoBI dataset recorded during walking. It is useful in addressing several important open research questions, such as how EEG is coupled with gait cycle during closed-loop BCI, how BCI influences neural activity during walking, and how a BCI decoder may be optimized.


Assuntos
Encéfalo , Neuroimagem , Caminhada , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Interfaces Cérebro-Computador , Eletroencefalografia , Humanos
5.
J Neural Eng ; 15(2): 021004, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29345632

RESUMO

OBJECTIVE: Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. APPROACH: To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. MAIN RESULTS: Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. SIGNIFICANCE: We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Exoesqueleto Energizado , Marcha/fisiologia , Extremidade Inferior/fisiologia , Robótica/métodos , Interfaces Cérebro-Computador/tendências , Eletroencefalografia/tendências , Potenciais Evocados Visuais/fisiologia , Exoesqueleto Energizado/tendências , Humanos , Robótica/tendências , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
6.
PLoS One ; 12(11): e0188500, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190704

RESUMO

This study investigated electrocortical dynamics of human walking across different unconstrained walking conditions (i.e., level ground (LW), ramp ascent (RA), and stair ascent (SA)). Non-invasive active-electrode scalp electroencephalography (EEG) signals were recorded and a systematic EEG processing method was implemented to reduce artifacts. Source localization combined with independent component analysis and k-means clustering revealed the involvement of four clusters in the brain during the walking tasks: Left and Right Occipital Lobe (LOL, ROL), Posterior Parietal Cortex (PPC), and Central Sensorimotor Cortex (SMC). Results showed that the changes of spectral power in the PPC and SMC clusters were associated with the level of motor task demands. Specifically, we observed α and ß suppression at the beginning of the gait cycle in both SA and RA walking (relative to LW) in the SMC. Additionally, we observed significant ß rebound (synchronization) at the initial swing phase of the gait cycle, which may be indicative of active cortical signaling involved in maintaining the current locomotor state. An increase of low γ band power in this cluster was also found in SA walking. In the PPC, the low γ band power increased with the level of task demands (from LW to RA and SA). Additionally, our results provide evidence that electrocortical amplitude modulations (relative to average gait cycle) are correlated with the level of difficulty in locomotion tasks. Specifically, the modulations in the PPC shifted to higher frequency bands when the subjects walked in RA and SA conditions. Moreover, low γ modulations in the central sensorimotor area were observed in the LW walking and shifted to lower frequency bands in RA and SA walking. These findings extend our understanding of cortical dynamics of human walking at different level of locomotion task demands and reinforces the growing body of literature supporting a shared-control paradigm between spinal and cortical networks during locomotion.


Assuntos
Caminhada/fisiologia , Eletroencefalografia/métodos , Feminino , Marcha , Humanos , Masculino
7.
Sci Rep ; 7(1): 8895, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827542

RESUMO

Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users' gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.


Assuntos
Interfaces Cérebro-Computador , Córtex Cerebral/fisiologia , Eletroencefalografia , Teste de Esforço , Caminhada , Adulto , Fenômenos Biomecânicos , Mapeamento Encefálico , Ondas Encefálicas , Simulação por Computador , Fenômenos Eletrofisiológicos , Feminino , Humanos , Masculino , Adulto Jovem
8.
Front Hum Neurosci ; 11: 320, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676750

RESUMO

Optimizing rehabilitation strategies requires understanding the effects of contextual cues on adaptation learning. Prior studies have examined these effects on the specificity of split-belt walking adaptation, showing that contextual visual cues can be manipulated to modulate the magnitude, transfer, and washout of split-belt-induced learning in humans. Specifically, manipulating the availability of vision during training or testing phases of learning resulted in differences in adaptive mechanisms for temporal and spatial features of walking. However, multi-trial locomotor training has been rarely explored when using visual kinematic gait perturbations. In this study, we investigated multi-trial locomotor adaptation in ten healthy individuals while applying visual kinematic perturbations. Subjects were instructed to control a moving cursor, which represented the position of their heel, to follow a prescribed heel path profile displayed on a monitor. The perturbations were introduced by scaling all of the lower limb joint angles by a factor of 0.7 (i.e., a gain change), resulting in visual feedback errors between subjects' heel trajectories and the prescribed path profiles. Our findings suggest that, with practice, the subjects learned, albeit with different strategies, to reduce the tracking errors and showed faster response time in later trials. Moreover, the gait symmetry indices, in both the spatial and temporal domains, changed significantly during gait adaptation (P < 0.001). After-effects were present in the temporal gait symmetry index whens the visual perturbations were removed in the post-exposure period (P < 0.001), suggesting adaptation learning. These findings may have implications for developing novel gait rehabilitation interventions.

9.
Med Devices (Auckl) ; 10: 89-107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533700

RESUMO

Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate.

10.
J Neural Eng ; 13(3): 036006, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27064824

RESUMO

OBJECTIVE: The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. APPROACH: In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. MAIN RESULTS: Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. SIGNIFICANCE: These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.


Assuntos
Adaptação Fisiológica/fisiologia , Fenômenos Biomecânicos/fisiologia , Interfaces Cérebro-Computador , Marcha/fisiologia , Realidade Virtual , Adulto , Algoritmos , Sistemas Computacionais , Eletroencefalografia , Humanos , Imaginação/fisiologia , Masculino , Córtex Motor/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Caminhada/fisiologia , Adulto Jovem
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5729-5732, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28325029

RESUMO

Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.


Assuntos
Eletroencefalografia , Caminhada/fisiologia , Adulto , Eletromiografia , Retroalimentação , Humanos , Extremidade Inferior/fisiologia , Masculino , Córtex Motor/fisiologia , Neurônios Motores/citologia , Músculo Esquelético/fisiologia
12.
Int Conf Virtual Rehabil ; 2015: 30-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27713915

RESUMO

The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system.

13.
Gait Posture ; 39(1): 443-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24071020

RESUMO

Robotics is gaining its popularity in gait rehabilitation. Gait pattern planning is important to ensure that the gait patterns induced by robotic systems are tailored to each individual and varying walking speed. Most research groups planned gait patterns for their robotics systems based on Clinical Gait Analysis (CGA) data. The major problem with the method using the CGA data is that it cannot accommodate inter-subject differences. In addition, CGA data is limited to only one walking speed as per the published data. The objective of this work was to develop an individual-specific gait pattern prediction model for gait pattern planning in the robotic gait rehabilitation systems. The waveforms of lower limb joint angles in the sagittal plane during walking were obtained with a motion capture system. Each waveform was represented and reconstructed by a Fourier coefficient vector which consisted of eleven elements. Generalized regression neural networks (GRNNs) were designed to predict Fourier coefficient vectors from given gait parameters and lower limb anthropometric data. The generated waveforms from the predicted Fourier coefficient vectors were compared to the actual waveforms and CGA waveforms by using the assessment parameters of correlation coefficients, mean absolute deviation (MAD) and threshold absolute deviation (TAD). The results showed that lower limb joint angle waveforms generated by the gait pattern prediction model were closer to the actual waveforms compared to the CGA waveforms.


Assuntos
Marcha/fisiologia , Articulações/fisiologia , Robótica/métodos , Adolescente , Adulto , Fenômenos Biomecânicos , Feminino , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Perna (Membro)/fisiologia , Masculino , Modelos Biológicos , Redes Neurais de Computação , Análise de Regressão , Adulto Jovem
14.
IEEE J Transl Eng Health Med ; 2: 2100209, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27170876

RESUMO

Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

15.
IEEE Int Conf Rehabil Robot ; 2011: 5975491, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22275688

RESUMO

Robotic is gaining its popularity in gait rehabilitation. Gait pattern planning is important, in order to ensure the gait patterns induced by robotic systems on the patient are natural and smooth. It is known that the gait parameters (stride length, cadence) are the key factors, which affect gait pattern. However, a systematic methodology for gait pattern planning is missing. Therefore, a gait pattern generation methodology, GaitGen, was proposed in our previous work. In this paper, we introduce a new model to enhance the proposed methodology for generating the joint angle waveforms of the lower limb during walking, with the gait parameters and the lower limb anthropometric data as input. The walking motion was captured with a motion capture system using passive markers. The waveforms of lower limb joint angles were calculated from the experimental data and the waveforms were then decomposed into Fourier coefficients. Therefore, each joint angle waveform can be represented by a Fourier coefficient vector containing eleven elements to facilitate the waveform analysis. Multi-layer perceptron neural networks (MLPNNs) were designed to predict the Fourier coefficient vectors for specific subject and desired gait parameters. Assessment parameters such as correlation coefficient, mean absolute deviation (MAD) and threshold absolute deviation (TAD) were calculated to examine the quality of MLPNNs' prediction. The constructed waveforms from predicted Fourier coefficient vectors were compared with the actual waveforms calculated from experimental data by using the above-mentioned assessment parameters. The results show that the constructed waveforms closely match the experimental waveforms based on the assessment parameter outcomes.


Assuntos
Extremidade Inferior/fisiologia , Redes Neurais de Computação , Robótica/instrumentação , Robótica/métodos , Adolescente , Adulto , Marcha/fisiologia , Humanos , Masculino , Caminhada/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...