Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067750

RESUMO

The ATP-sensitive K+ channel (KATP) is involved in hypersensitivity during chronic pain and is presumed to be a downstream target of mu opioid receptors. Multiple subtypes of KATP channels exist in the peripheral and central nervous system and their activity may be inversely correlated to chronic pain phenotypes in rodents. In this study, we investigated the different KATP channel subunits that could be involved in neuropathic pain in mice. In chronic pain models utilizing spinal nerve ligation, SUR1 and Kir6.2 subunits were found to be significantly downregulated in dorsal root ganglia and the spinal cord. Local or intrathecal administration of SUR1-KATP channel subtype agonists resulted in analgesia after spinal nerve ligation but not SUR2 agonists. In ex-vivo nerve recordings, administration of the SUR1 agonist diazoxide to peripheral nerve terminals decreased mechanically evoked potentials. Genetic knockdown of SUR1 through an associated adenoviral strategy resulted in mechanical hyperalgesia but not thermal hyperalgesia compared to control mice. Behavioral data from neuropathic mice indicate that local reductions in SUR1-subtype KATP channel activity can exacerbate neuropathic pain symptoms. Since neuropathic pain is of major clinical relevance, potassium channels present a target for analgesic therapies, especially since they are expressed in nociceptors and could play an essential role in regulating the excitability of neurons involved in pain-transmission.


Assuntos
Analgésicos/farmacologia , Diazóxido/farmacologia , Hiperalgesia/tratamento farmacológico , Nervos Espinhais/efeitos dos fármacos , Receptores de Sulfonilureias/agonistas , Analgésicos/uso terapêutico , Animais , Diazóxido/uso terapêutico , Potenciais Evocados , Feminino , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Nervos Espinhais/metabolismo , Nervos Espinhais/fisiopatologia , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Tato
2.
Cellulose (Lond) ; 25: 2303-2319, 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-31839698

RESUMO

Cellulose is one of the most abundant natural polymers, is readily available, biodegradable, and inexpensive. Recently, interest is growing around nanoscale cellulose due to the sustainability of these materials, the novel properties, and the overall low environmental impact. The rapid expansion of nanocellulose uses in various applications makes the study of the toxicological properties of these materials of great importance to public health regulators. However, most of the current toxicological studies are highly conflicting, inconclusive, and contradictory. The major reasons for these discrepancies are the lack of standardized methods to produce industry-relevant reference nanocellulose and relevant characterization that will expand beyond the traditional cellulose characterization for applications. In order to address these issues, industry-relevant synthesis platforms were developed to produce nanocellulose of controlled properties that can be used as reference materials in toxicological studies. Herein, two types of nanocellulose were synthesized, cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) using the friction grinding platform and an acid hydrolysis approach respectively. The nanocellulose structures were characterized extensively regarding their physicochemical properties, including testing for endotoxins and bacteria contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...