Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(1): 279-286, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34932334

RESUMO

The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (Na2S), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H2 generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.

2.
J Chem Phys ; 154(9): 094707, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685140

RESUMO

Precision engineering of defects in luminescent nanoscale crystalline materials with lesser controls to design is an area of interest in engineering materials with desired properties. Li+ co-doped BaYF5 nanocrystals were engineered, and temperature as controls for determining the co-dopant occupancies in the host lattice is studied. An observed enhancement in the up-conversion photoluminescence results from the co-dopant occupancy at Ba2+ sites via substitution through the hot injection method, whereas for samples prepared using co-precipitation, photoluminescence quenching was observed, which can be correlated with the Li+ occupancy at the interstitial site near Er3+ and also due to the incorporation of OH-. The crystal lattice deformation as a result of doping and the mechanism for the observed enhancement/quenching of luminescence are studied using x-ray diffraction, x-ray photoelectron spectroscopy, and energy transfer mechanism. Cytotoxicity assay and photoluminescence studies of the synthesized nanocrystals confirm that the material is biocompatible.

3.
Sci Rep ; 9(1): 937, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700751

RESUMO

Graphite Oxide (multi-layer) composite with other materials has a huge application in various field of science, due to its excellent and unique properties. Even though from past decade, immense research has been done by materials scientists in this field, but the chemistry is still not yet satisfactory. Here, in this work, through the discovery of Nanogate structure, we have reported for the first time the experimental results that enlightened the clear chemistry between the GO and ZnS which is further supported by the DFT calculations. This novel synthesis method led to the discovery of nanogate structure sandwiched between the GO layers. The nanogate formation also shows enhanced properties for various applications like photocatalytic activities, etc. Due to the nanogate formation, there might be a possibility of enormous generation of electrons on excitation of the composite materials, which can be a boom for various applications like photocatalysis, water splitting, solar cell, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...