Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5332, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658083

RESUMO

Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia
2.
J Invest Dermatol ; 143(7): 1157-1167.e10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716917

RESUMO

ERAP1, ERAP2, and LNPEP are aminopeptidases implicated in autoimmune pathophysiology. In this study, we show that ERAP2 is upregulated and ERAP1 is downregulated in patients with psoriasis who are homozygous for autoimmune-linked variants of ERAP. We also demonstrate that aminopeptidase expression is not uniform in the skin. Specifically, the intracellular antigen-processing aminopeptidases ERAP1 and ERAP2 are strongly expressed in basal and early spinous layer keratinocytes, whereas granular layer keratinocytes expressed predominantly LNPEP, an aminopeptidase specialized in the processing of extracellular antigens for presentation to T cells. In psoriasis, basal keratinocytes also expressed the T-cell- and monocyte-attracting chemokine, CCL2, and the T-cell-supporting cytokine, IL-15. In contrast, TGF-ß1 was the major cytokine expressed by healthy control basal keratinocytes. SFRP2-high dermal fibroblasts were also noted to have an ERAP2-high expression phenotype and elevated HLA-C. In psoriasis, the SFRP2-high fibroblast subpopulation also expressed elevated CXCL14. From these results, we postulate that (i) an increased ERAP2/ERAP1 ratio results in altered antigen processing, a potential mechanism by which ERAP risk alleles predispose individuals to autoimmunity; (ii) ERAP2-high expressing cells display a unique major histocompatibility complex-bound peptidome generated from intracellular antigens; and (iii) the granular layer peptidome is skewed toward extracellular antigens.


Assuntos
Predisposição Genética para Doença , Psoríase , Humanos , Aminopeptidases/genética , Psoríase/genética , Fenótipo , Citocinas/genética , Antígenos de Histocompatibilidade Menor/genética , Polimorfismo de Nucleotídeo Único
3.
RSC Adv ; 12(29): 18450-18456, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799915

RESUMO

In this work, we developed a targeted glycoproteomic method to monitor the site-specific glycoprofiles and quantities of the most abundant HDL-associated proteins using Orbitrap LC-MS for (glyco)peptide target discovery and QqQ LC-MS for quantitative analysis. We conducted a pilot study using the workflow to determine whether HDL protein glycoprofiles are altered in healthy human participants in response to dietary glycan supplementation.

4.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35862195

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a posttranslational regulator of the LDL receptor (LDLR). Recent studies have proposed a role for PCSK9 in regulating immune responses. Using RNA-Seq-based variant discovery, we identified a possible psoriasis-susceptibility locus at 1p32.3, located within PCSK9 (rs662145 C > T). This finding was verified in independently acquired genomic and RNA-Seq data sets. Single-cell RNA-Seq (scRNA-Seq) identified keratinocytes as the primary source of PCSK9 in human skin. PCSK9 expression, however, was not uniform across keratinocyte subpopulations. scRNA-Seq and IHC demonstrated an epidermal gradient of PCSK9, with expression being highest in basal and early spinous layer keratinocytes and lowest in granular layer keratinocytes. IL36G expression followed the opposite pattern, with expression highest in granular layer keratinocytes. PCSK9 siRNA knockdown experiments confirmed this inverse relationship between PCSK9 and IL36G expression. Other immune genes were also linked to PCSK9 expression, including IL27RA, IL1RL1, ISG20, and STX3. In both cultured keratinocytes and nonlesional human skin, homozygosity for PCSK9 SNP rs662145 C > T was associated with lower PCSK9 expression and higher IL36G expression, when compared with heterozygous skin or cell lines. Together, these results support PCSK9 as a psoriasis-susceptibility locus and establish a putative link between PCSK9 and inflammatory cytokine expression.


Assuntos
Pró-Proteína Convertase 9 , Psoríase , Humanos , Interleucina-1 , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Psoríase/genética , Serina Endopeptidases/metabolismo , Subtilisinas/genética
5.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35900871

RESUMO

The epidermis is the outermost layer of skin. Here, we used targeted lipid profiling to characterize the biogeographic alterations of human epidermal lipids across 12 anatomically distinct body sites, and we used single-cell RNA-Seq to compare keratinocyte gene expression at acral and nonacral sites. We demonstrate that acral skin has low expression of EOS acyl-ceramides and the genes involved in their synthesis, as well as low expression of genes involved in filaggrin and keratin citrullination (PADI1 and PADI3) and corneodesmosome degradation, changes that are consistent with increased corneocyte retention. Several overarching principles governing epidermal lipid expression were also noted. For example, there was a strong negative correlation between the expression of 18-carbon and 22-carbon sphingoid base ceramides. Disease-specific alterations in epidermal lipid gene expression and their corresponding alterations to the epidermal lipidome were characterized. Lipid biomarkers with diagnostic utility for inflammatory and precancerous conditions were identified, and a 2-analyte diagnostic model of psoriasis was constructed using a step-forward algorithm. Finally, gene coexpression analysis revealed a strong connection between lipid and immune gene expression. This work highlights (a) mechanisms by which the epidermis is uniquely adapted for the specific environmental insults encountered at different body surfaces and (b) how inflammation-associated alterations in gene expression affect the epidermal lipidome.


Assuntos
Epiderme , Análise de Célula Única , Carbono/metabolismo , Ceramidas/metabolismo , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo
7.
Clin Immunol ; 230: 108825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403816

RESUMO

We have recently introduced multiple reaction monitoring (MRM) mass spectrometry as a novel tool for glycan biomarker research and discovery. Herein, we employ this technique to characterize the site-specific glycan alterations associated with primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Glycopeptides associated with disease severity were also identified. Multinomial regression modelling was employed to construct and validate multi-analyte diagnostic models capable of accurately distinguishing PBC, PSC, and healthy controls from one another (AUC = 0.93 ± 0.03). Finally, to investigate how disease-relevant environmental factors can influence glycosylation, we characterized the ability of bile acids known to be differentially expressed in PBC to alter glycosylation. We hypothesize that this could be a mechanism by which altered self-antigens are generated and become targets for immune attack. This work demonstrates the utility of the MRM method to identify diagnostic site-specific glycan classifiers capable of distinguishing even related autoimmune diseases from one another.


Assuntos
Autoimunidade , Colangite Esclerosante/imunologia , Cirrose Hepática Biliar/imunologia , Polissacarídeos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/imunologia , Biomarcadores/sangue , Estudos de Casos e Controles , Colangite Esclerosante/sangue , Colangite Esclerosante/diagnóstico , Diagnóstico Diferencial , Glicômica/métodos , Glicopeptídeos/sangue , Glicopeptídeos/imunologia , Glicosilação , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/diagnóstico , Polissacarídeos/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
Sci Rep ; 11(1): 7315, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795767

RESUMO

Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Fototerapia/métodos , Pele/metabolismo , Pele/efeitos da radiação , Transcriptoma , Adulto , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Feminino , Fibrose , Perfilação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Pessoa de Meia-Idade , Estresse Oxidativo , Oxigênio/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio , Dermatopatias/metabolismo , Fatores de Tempo , Fatores de Transcrição
11.
Sci Rep ; 10(1): 17505, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060657

RESUMO

Alterations in the human glycome have been associated with cancer and autoimmunity. Thus, constructing a site-specific map of the human glycome for biomarker research and discovery has been a highly sought-after objective. However, due to analytical barriers, comprehensive site-specific glycoprofiling is difficult to perform. To develop a platform to detect easily quantifiable, site-specific, disease-associated glycan alterations for clinical applications, we have adapted the multiple reaction monitoring mass spectrometry method for use in glycan biomarker research. The adaptations allow for highly precise site-specific glycan monitoring with minimum sample prep. Using this technique, we successfully mapped out the relative abundances of the most common 159 glycopeptides in the plasma of 97 healthy volunteers. This plasma glycome map revealed 796 significant (FDR < 0.05) site-specific inter-protein and intra-protein glycan associations, of which the vast majority were previously unknown. Since age and gender are relevant covariants in biomarker research, these variables were also characterized. 13 glycopeptides were found to be associated with gender and 41 to be associated with age. Using just five age-associated glycopeptides, a highly accurate age prediction model was constructed and validated (r2 = 0.62 ± 0.12). The human plasma site-specific glycan map described herein has utility in applications ranging from glycan biomarker research and discovery to the development of novel glycan-altering interventions.


Assuntos
Fatores Etários , Biomarcadores/sangue , Polissacarídeos/sangue , Fatores Sexuais , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas , Feminino , Glicômica , Glicopeptídeos/sangue , Glicosilação , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Adulto Jovem
12.
Clin Immunol ; 218: 108537, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32679247

RESUMO

Psoriasis (PsO) and psoriatic arthritis (PsA) are chronic immune-mediated inflammatory diseases of multifactorial etiology. In addition to genetic and environmental factors, evidence supports involvement of a dysregulated human microbiome in the pathogenesis of psoriatic disease. In particular, alterations in the composition of the microbiome, termed dysbiosis, can result in downstream proinflammatory effects in the gut, skin, and joints. Both the cutaneous and intestinal microbial populations are implicated in the pathogenesis of psoriatic disease, although exact mechanisms are unclear. Herein, we review the relationship between the human microbiome and psoriatic disease. Further insight into the functions of the microbiome may allow for greater understanding of inflammatory disease processes and identification of additional therapeutic targets.


Assuntos
Trato Gastrointestinal/microbiologia , Microbiota , Psoríase/microbiologia , Pele/microbiologia , Animais , Humanos
13.
Proc Natl Acad Sci U S A ; 117(14): 7633-7644, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213588

RESUMO

Membrane-bound oligosaccharides form the interfacial boundary between the cell and its environment, mediating processes such as adhesion and signaling. These structures can undergo dynamic changes in composition and expression based on cell type, external stimuli, and genetic factors. Glycosylation, therefore, is a promising target of therapeutic interventions for presently incurable forms of advanced cancer. Here, we show that cholangiocarcinoma metastasis is characterized by down-regulation of the Golgi α-mannosidase I coding gene MAN1A1, leading to elevation of extended high-mannose glycans with terminating α-1,2-mannose residues. Subsequent reshaping of the glycome by inhibiting α-mannosidase I resulted in significantly higher migratory and invasive capabilities while masking cell surface mannosylation suppressed metastasis-related phenotypes. Exclusive elucidation of differentially expressed membrane glycoproteins and molecular modeling suggested that extended high-mannose glycosylation at the helical domain of transferrin receptor protein 1 promotes conformational changes that improve noncovalent interaction energies and lead to enhancement of cell migration in metastatic cholangiocarcinoma. The results provide support that α-1,2-mannosylated N-glycans present on cancer cell membrane proteins may serve as therapeutic targets for preventing metastasis.


Assuntos
Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Manose/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Feminino , Glicosilação , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Metástase Neoplásica , Fenótipo , Multimerização Proteica
14.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31969436

RESUMO

Molecular mechanisms of Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation have been studied primarily by measuring the total or average activity of an infected cell population, which often consists of a mixture of both nonresponding and reactivating cells that in turn contain KSHVs at various stages of replication. Studies on KSHV gene regulation at the individual cell level would allow us to better understand the basis for this heterogeneity, and new preventive measures could be developed based on findings from nonresponding cells exposed to reactivation stimuli. Here, we generated a recombinant reporter virus, which we named "Rainbow-KSHV," that encodes three fluorescence-tagged KSHV proteins (mBFP2-ORF6, mCardinal-ORF52, and mCherry-LANA). Rainbow-KSHV replicated similarly to a prototype reporter-KSHV, KSHVr.219, and wild-type BAC16 virus. Live imaging revealed unsynchronized initiation of reactivation and KSHV replication with diverse kinetics between individual cells. Cell fractionation revealed temporal gene regulation, in which early lytic gene expression was terminated in late protein-expressing cells. Finally, isolation of fluorescence-positive cells from nonresponders increased dynamic ranges of downstream experiments 10-fold. Thus, this study demonstrates a tool to examine heterogenic responses of KSHV reactivation for a deeper understanding of KSHV replication.IMPORTANCE Sensitivity and resolution of molecular analysis are often compromised by the use of techniques that measure the ensemble average of large cell populations. Having a research tool to nondestructively identify the KSHV replication stage in an infected cell would not only allow us to effectively isolate cells of interest from cell populations but also enable more precise sample selection for advanced single-cell analysis. We prepared a recombinant KSHV that can report on its replication stage in host cells by differential fluorescence emission. Consistent with previous host gene expression studies, our experiments reveal the highly heterogenic nature of KSHV replication/gene expression at individual cell levels. The utilization of a newly developed reporter-KSHV and initial characterization of KSHV replication in single cells are presented.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Replicação Viral/genética , Linhagem Celular , Fluorescência , Genes Virais/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas Virais/genética
15.
Nat Protoc ; 15(2): 207-235, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31925402

RESUMO

Reactive molecular oxygen (O2) plays important roles in bioenergetics and metabolism and is implicated in biochemical pathways underlying angiogenesis, fertilization, wound healing and regeneration. Here we describe how to use the scanning micro-optrode technique (SMOT) to measure extracellular fluxes of dissolved O2. The self-referencing O2-specific micro-optrode (also termed micro-optode and optical fiber microsensor) is a tapered optical fiber with an O2-sensitive fluorophore coated onto the tip. The O2 concentration is quantified by fluorescence quenching of the fluorophore emission upon excitation with blue-green light. The micro-optrode presents high spatial and temporal resolutions with improved signal-to-noise ratio (in the picomole range). In this protocol, we provide step-by-step instructions for micro-optrode calibration, validation, example applications and data analysis. We describe how to use the technique for cells (Xenopus oocyte), tissues (Xenopus epithelium and rat cornea), organs (Xenopus gills and mouse skin) and appendages (Xenopus tail), and provide recommendations on how to adapt the approach to different model systems. The basic, user-friendly system presented here can be readily installed to reliably and accurately measure physiological O2 fluxes in a wide spectrum of biological models and physiological responses. The full protocol can be performed in ~4 h.


Assuntos
Microtecnologia/instrumentação , Monitorização Fisiológica/instrumentação , Fibras Ópticas , Oxigênio/análise , Animais , Masculino , Camundongos , Microtecnologia/normas , Ratos , Padrões de Referência , Fatores de Tempo
16.
Stem Cells ; 38(2): 231-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648388

RESUMO

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.


Assuntos
Hidrogéis/uso terapêutico , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Diferenciação Celular , Humanos
17.
Clin Cancer Res ; 25(23): 7004-7013, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481504

RESUMO

PURPOSE: Based on the potential for ipilimumab (I) to augment T-cell activation, we hypothesize that ipilimumab would augment the efficacy of rituximab (R) in patients with relapsed/refractory (R/R) CD20+non-Hodgkin's lymphoma (NHL). This phase I study aimed to identify a recommended phase 2 dose, document toxicities, and preliminarily assess efficacy and potential predictive biomarkers. PATIENTS AND METHODS: Thirty-three patients with R/R CD20+B-cell lymphoma received R at 375 mg/m2weekly for 4 weeks and I at 3 mg/kg on day 1 and every 3 weeks for four doses. Responding patients went on to maintenance with each agent given every 12 weeks. To facilitate correlative analysis, the expansion phase randomized patients to simultaneous R+I versus R with I delayed 2 weeks. RESULTS: Toxicity was manageable; no dose-limiting toxicity was observed at the doses studied. When considering the entire cohort, efficacy was modest, with an objective response rate (ORR) of 24% and median progression-free survival (PFS) of 2.6 months. However, in follicular lymphoma patients, the ORR was 58% with a median PFS of 5.6 months. The randomized comparison of R with R+I demonstrated that R+I resulted in more effective B-cell depletion (BCD). Both B-cell depletion and the ratio of CD45RA-regulatory T cell (Treg) to Treg were associated with response at all time points. CONCLUSIONS: The combination of R+I has manageable toxicity and encouraging efficacy in R/R follicular lymphoma. The ratio of CD45RA-Tregs to total Tregs, and peripheral BCD should be studied further as potential predictors of response.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Adulto , Idoso , Feminino , Seguimentos , Humanos , Ipilimumab/administração & dosagem , Linfoma de Células B/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico , Rituximab/administração & dosagem , Taxa de Sobrevida
18.
PLoS Biol ; 17(4): e3000044, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964858

RESUMO

Many bacterial pathogens hijack macrophages to egress from the port of entry to the lymphatic drainage and/or bloodstream, causing dissemination of life-threatening infections. However, the underlying mechanisms are not well understood. Here, we report that Salmonella infection generates directional electric fields (EFs) in the follicle-associated epithelium of mouse cecum. In vitro application of an EF, mimicking the infection-generated electric field (IGEF), induces directional migration of primary mouse macrophages to the anode, which is reversed to the cathode upon Salmonella infection. This infection-dependent directional switch is independent of the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. The switch is accompanied by a reduction of sialic acids on glycosylated surface components during phagocytosis of bacteria, which is absent in macrophages challenged by microspheres. Moreover, enzymatic cleavage of terminally exposed sialic acids reduces macrophage surface negativity and severely impairs directional migration of macrophages in response to an EF. Based on these findings, we propose that macrophages are attracted to the site of infection by a combination of chemotaxis and galvanotaxis; after phagocytosis of bacteria, surface electrical properties of the macrophage change, and galvanotaxis directs the cells away from the site of infection.


Assuntos
Trato Gastrointestinal/imunologia , Macrófagos/fisiologia , Resposta Táctica/fisiologia , Animais , Proteínas de Bactérias , Movimento Celular/fisiologia , Condutividade Elétrica , Eletricidade , Epitélio/imunologia , Epitélio/metabolismo , Feminino , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Salmonella/patogenicidade , Infecções por Salmonella/metabolismo , Infecções por Salmonella/fisiopatologia
19.
Front Immunol ; 10: 589, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019502

RESUMO

The present paradigm of psoriasis pathogenesis revolves around the IL-23/IL-17A axis. Dual-secreting Th17 T cells presumably are the predominant sources of the psoriasis phenotype-driving cytokines, IL-17A and IL-22. We thus conducted a meta-analysis of independently acquired RNA-seq psoriasis datasets to explore the relationship between the expression of IL17A and IL22. This analysis failed to support the existence of dual secreting IL-17A/IL-22 Th17 cells as a major source of these cytokines. However, variable relationships amongst the expression of psoriasis susceptibility genes and of IL17A, IL22, and IL23A were identified. Additionally, to shed light on gene expression relationships in psoriasis, we applied a machine learning nonlinear dimensionality reduction strategy (t-SNE) to display the entire psoriasis transcriptome as a 2-dimensonal image. This analysis revealed a variety of gene clusters, relevant to psoriasis pathophysiology but failed to support a relationship between IL17A and IL22. These results support existing theories on alternative sources of IL-17A and IL-22 in psoriasis such as a Th22 cells and non-T cell populations.


Assuntos
Interleucina-17/biossíntese , Interleucinas/biossíntese , Psoríase/etiologia , Psoríase/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Transcriptoma , Biomarcadores , Biologia Computacional/métodos , Citocinas/biossíntese , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Imagem Molecular , Psoríase/patologia , Interleucina 22
20.
Nat Commun ; 9(1): 4296, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327466

RESUMO

Redox state sustained by reactive oxygen species (ROS) is crucial for regeneration; however, the interplay between oxygen (O2), ROS and hypoxia-inducible factors (HIF) remains elusive. Here we observe, using an optic-based probe (optrode), an elevated and steady O2 influx immediately upon amputation. The spatiotemporal O2 influx profile correlates with the regeneration of Xenopus laevis tadpole tails. Inhibition of ROS production but not ROS scavenging decreases O2 influx. Inhibition of HIF-1α impairs regeneration and stabilization of HIF-1α induces regeneration in the refractory period. In the regeneration bud, hypoxia correlates with O2 influx, ROS production, and HIF-1α stabilization that modulate regeneration. Further analyses reveal that heat shock protein 90 is a putative downstream target of HIF-1α while electric current reversal is a de facto downstream target of HIF-1α. Collectively, the results show a mechanism for regeneration via the orchestration of O2 influx, ROS production, and HIF-1α stabilization.


Assuntos
Oxigênio/metabolismo , Regeneração/fisiologia , Cauda/fisiologia , Xenopus laevis/fisiologia , Animais , Animais Geneticamente Modificados , Benzoquinonas/farmacologia , Hipóxia Celular , Equinomicina/farmacologia , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactamas Macrocíclicas/farmacologia , Larva/metabolismo , Larva/fisiologia , Masculino , Camundongos Mutantes , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Cauda/lesões , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...