Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1279915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927882

RESUMO

This systematic review and meta-analysis aimed to evaluate the ingestion of toothpaste and its sequelae. The study adhered to the PRISMA guidelines and was registered in the PROSPERO database. A comprehensive search strategy was conducted across multiple databases, resulting in the inclusion of 18 relevant publications. Eligible studies encompassed various designs and included both children and adults as the study population. Data extraction was carried out systematically, and relevant information on study characteristics, interventions, and outcomes were collected. The assessment of bias was performed using the Joanna Briggs Institute's Critical Appraisal Tools showing variations of bias among the included studies. The overall risk of systemic toxicity was found to be low, and no severe or life-threatening events were reported in the included studies. Furthermore, some toothpaste formulations containing higher concentrations of fluoride were associated with an increased risk of dental fluorosis. These findings have several implications for practice and policy. Healthcare providers and dental professionals should emphasize the importance of promoting safe toothpaste use, especially in vulnerable populations such as young children who are more prone to accidental ingestion. Public health campaigns and educational initiatives should aim to raise awareness about appropriate toothpaste usage and the potential risks. In addition, toothpaste manufacturers and regulatory bodies should consider revising guidelines and regulations to ensure the safety of oral care products, including the appropriate concentration of active ingredients. Future research should focus on investigating the long-term effects of toothpaste ingestion, exploring potential interactions between different active ingredients, and evaluating the efficacy of current preventive measures.


Assuntos
Fluoretos , Cremes Dentais , Criança , Adulto , Humanos , Pré-Escolar , Cremes Dentais/efeitos adversos , Fluoretos/efeitos adversos , Promoção da Saúde , Pessoal de Saúde , Ingestão de Alimentos
2.
Nanoscale ; 15(25): 10808-10819, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37334549

RESUMO

Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet-printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 µm, with different inkjet-printed carbon-based semiconductors, including biocompatible polymers present in the picogram range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors.


Assuntos
Quitosana , Recém-Nascido , Humanos , Semicondutores , Celulose , Eletrônica
3.
ACS Sens ; 7(10): 2995-3005, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36222410

RESUMO

Improper freezing of food causes food waste and negatively impacts the environment. In this work, we propose a device that can detect defrosting events by coupling a temperature-activated galvanic cell with an ionochromic cell, which is activated by the release of ions during current flow. Both the components of the sensor are fabricated through simple and low-energy-consuming procedures from edible materials. The galvanic cell operates with an aqueous electrolyte solution, producing current only at temperatures above the freezing point of the solution. The ionochromic cell exploits the current generated during the defrosting to release tin ions, which form complexes with natural dyes, causing the color change. Therefore, this sensor provides information about defrosting events. The temperature at which the sensor reacts can be tuned between 0 and -50 °C. The device can thus be flexibly used in the supply chain: as a sensor, it can measure the length of exposure to above-the-threshold temperatures, while as a detector, it can provide a signal that there was exposure to above-the-threshold temperatures. Such a device can ensure that frozen food is handled correctly and is safe for consumption. As a sensor, it could be used by the workers in the supply chain, while as a detector, it could be useful for end consumers, ensuring that the food was properly frozen during the whole supply chain.


Assuntos
Alimentos , Eliminação de Resíduos , Humanos , Temperatura
4.
Nat Commun ; 10(1): 3365, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358747

RESUMO

Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process.

5.
Adv Mater ; 30(20): e1705463, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29582485

RESUMO

Polymer semiconductors have been experiencing a remarkable improvement in electronic and optoelectronic properties, which are largely related to the recent development of a vast library of high-performance, donor-acceptor copolymers showing alternation of chemical moieties with different electronic affinities along their backbones. Such steady improvement is making conjugated polymers even more appealing for large-area and flexible electronic applications, from distributed and portable electronics to healthcare devices, where cost-effective manufacturing, light weight, and ease of integration represent key benefits. Recently, a strong boost to charge carrier mobility in polymer-based field-effect transistors, consistently achieving the range from 1.0 to 10 cm2 V-1 s-1 for both holes and electrons, has been given by uniaxial backbone alignment of polymers in thin films, inducing strong transport anisotropy and favoring enhanced transport properties along the alignment direction. Herein, an overview on this topic is provided with a focus on the processing-structure-property relationships that enable the controlled and uniform alignment of polymer films over large areas with scalable processes. The key aspects are specific molecular structures, such as planarized backbones with a reduced degree of conformational disorder, solution formulation with controlled aggregation, and deposition techniques inducing suitable directional flow.

6.
Chem Mater ; 29(13): 5473-5483, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28890605

RESUMO

The synthesis, characterization, and charge transport performance of novel copolymers PNDIFu2 made from alternating naphthalene diimide (NDI) and bifuran (Fu2) units are reported. Usage of potentially biomass-derived Fu2 as alternating repeat unit enables flattened polymer backbones due to reduced steric interactions between the imide oxygens and Fu2 units, as seen by density functional theory (DFT) calculations and UV-vis spectroscopy. Aggregation of PNDIFu2 in solution is enhanced if compared to the analogous NDI-bithiophene (T2) copolymers PNDIT2, occurring in all solvents and temperatures probed. PNDIFu2 features a smaller π-π stacking distance of 0.35 nm compared to 0.39 nm seen for PNDIT2. Alignment of aggregates in films is achieved by using off-center spin coating, whereby PNDIFu2 exhibits a stronger dichroic ratio and transport anisotropy in field-effect transistors (FET) compared to PNDIT2, with an overall good electron mobility of 0.21 cm2/(V s). Despite an enhanced backbone planarity, the smaller π-π stacking and the enhanced charge transport anisotropy, the electron mobility of PNDIFu2 is about three times lower compared to PNDIT2. Density functional theory calculations suggest that charge transport in PNDIFu2 is limited by enhanced polaron localization compared to PNDIT2.

7.
ACS Appl Mater Interfaces ; 9(21): 18151-18160, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28466635

RESUMO

Organic conductors are being evaluated for potential use in waste heat recovery through lightweight and flexible thermoelectric generators manufactured using cost-effective printing processes. Assessment of the potentiality of organic materials in real devices still requires a deeper understanding of the physics behind their thermoelectric properties, which can pave the way toward further development of the field. This article reports a detailed thermoelectric study of a set of highly conducting inkjet-printed films of commercially available poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulations characterized by in-plane electrical conductivity, spanning the interval 10-500 S/cm. The power factor is maximized for the formulation showing an intermediate electrical conductivity. The Seebeck coefficient is studied in the framework of Mott's relation, assuming a (semi-)classical definition of the transport function. Ultraviolet photoelectron spectroscopy at the Fermi level clearly indicates that the shape of the density of states alone is not sufficient to explain the observed Seebeck coefficient, suggesting that carrier mobility is important in determining both the electrical conductivity and thermopower. Finally, the cross-plane thermal conductivity is reliably extracted thanks to a scaling approach that can be easily performed using typical pump-probe spectroscopy.

8.
Chem ; 2(3): 417-426, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28367516

RESUMO

Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabrication.

9.
ACS Omega ; 2(1): 1-10, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28180187

RESUMO

The first demonstration of an n-type water-gated organic field-effect transistor (WGOFET) is here reported, along with simple water-gated complementary integrated circuits, in the form of inverting logic gates. For the n-type WGOFET active layer, high-electron-affinity organic semiconductors, including naphthalene diimide co-polymers and a soluble fullerene derivative, have been compared, with the latter enabling a high electric double layer capacitance in the range of 1 µF cm-2 in full accumulation and a mobility-capacitance product of 7 × 10-3 µF/V s. Short-term stability measurements indicate promising cycling robustness, despite operating the device in an environment typically considered harsh, especially for electron-transporting organic molecules. This work paves the way toward advanced circuitry design for signal conditioning and actuation in an aqueous environment and opens new perspectives in the implementation of active bio-organic interfaces for biosensing and neuromodulation.

10.
Nat Commun ; 6: 8394, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26403619

RESUMO

High-mobility semiconducting polymers offer the opportunity to develop flexible and large-area electronics for several applications, including wearable, portable and distributed sensors, monitoring and actuating devices. An enabler of this technology is a scalable printing process achieving uniform electrical performances over large area. As opposed to the deposition of highly crystalline films, orientational alignment of polymer chains, albeit commonly achieved by non-scalable/slow bulk alignment schemes, is a more robust approach towards large-area electronics. By combining pre-aggregating solvents for formulating the semiconductor and by adopting a room temperature wired bar-coating technique, here we demonstrate the fast deposition of submonolayers and nanostructured films of a model electron-transporting polymer. Our approach enables directional self-assembling of polymer chains exhibiting large transport anisotropy and a mobility up to 6.4 cm(2) V(-1) s(-1), allowing very simple device architectures to operate at 3.3 MHz. Thus, the proposed deposition strategy is exceptionally promising for mass manufacturing of high-performance polymer circuits.

11.
J Am Chem Soc ; 137(20): 6705-11, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25945509

RESUMO

A highly efficient, simple, and environmentally friendly protocol for the synthesis of an alternating naphthalene diimide bithiophene copolymer (PNDIT2) via direct arylation polycondensation (DAP) is presented. High molecular weight (MW) PNDIT2 can be obtained in quantitative yield using aromatic solvents. Most critical is the suppression of two major termination reactions of NDIBr end groups: nucleophilic substitution and solvent end-capping by aromatic solvents via C-H activation. In situ solvent end-capping can be used to control MW by varying monomer concentration, whereby end-capping is efficient and MW is low for low concentration and vice versa. Reducing C-H reactivity of the solvent at optimized conditions further increases MW. Chain perfection of PNDIT2 is demonstrated in detail by NMR spectroscopy, which reveals PNDIT2 chains to be fully linear and alternating. This is further confirmed by investigating the optical and thermal properties as a function of MW, which saturate at Mn ≈ 20 kDa, in agreement with controls made by Stille coupling. Field-effect transistor (FET) electron mobilities µsat up to 3 cm(2)/(V·s) are measured using off-center spin-coating, with FET devices made from DAP PNDIT2 exhibiting better reproducibility compared to Stille controls.

12.
Langmuir ; 30(45): 13581-7, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346328

RESUMO

In this work, we describe self-assembled surfaces with a peculiar multiscale organization, from the nanoscale to the microscale, exhibiting the Cassie-Baxter wetting regime with extremely low water adhesion: floating drops regime with roll-off angles < 5°. These surfaces comprise bundles of hierarchical, quasi-one-dimensional (1D) TiO2 nanostructures functionalized with a fluorinated molecule (PFNA). While the hierarchical nanostructures are the result of a gas-phase self-assembly process, their bundles are the result of the capillary forces acting between them when the PFNA solvent evaporates. Nanometric features are found to influence the hydrophobic behavior of the surface, which is enhanced by the micrometric structures up to the achievement of the superhydrophobic Cassie-Baxter state (contact angle (CA) ≫ 150°). Thanks to their high total and diffuse transmittance and their self-cleaning properties, these surfaces could be interesting for several applications such as smart windows and photovoltaics where light management and surface cleanliness play a crucial role. Moreover, the multiscale analysis performed in this work contributes to the understanding of the basic mechanisms behind extreme wetting behaviors.

13.
ACS Nano ; 8(6): 5968-78, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24815931

RESUMO

Structure-property relationships are of fundamental importance to develop quantitative models describing charge transport in organic semiconductor based electronic devices, which are among the best candidates for future portable and lightweight electronic applications. While microstructural investigations, such as those based on X-rays, electron microscopy, or polarized optical probes, provide necessary information for the rationalization of transport in macromolecular solids, a general model predicting how charge accommodates within structural maps is not yet available. Therefore, techniques capable of directly monitoring how charge is distributed when injected into a polymer film and how it correlates to structural domains can help fill this gap. Supported by density functional theory calculations, here we show that polarized charge modulation microscopy (p-CMM) can unambiguously and selectively map the orientational order of the only conjugated segments that are probed by mobile charge in the few nanometer thick accumulation layer of a high-mobility polymer-based field-effect transistor . Depending on the specific solvent-induced microstructure within the accumulation layer, we show that p-CMM can image charge-probed domains that extend from submicrometer to tens of micrometers size, with markedly different degrees of alignment. Wider and more ordered p-CMM domains are associated with improved carrier mobility, as extracted from device characteristics. This observation evidences the unprecedented opportunity to correlate, directly in a working device, electronic properties with structural information on those conjugated segments involved in charge transport at the buried semiconductor-dielectric interface of a field-effect device.

14.
Materials (Basel) ; 7(2): 906-947, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788493

RESUMO

Nano- and micro- fibers of conjugated polymer semiconductors are particularly interesting both for applications and for fundamental research. They allow an investigation into how electronic properties are influenced by size confinement and chain orientation within microstructures that are not readily accessible within thin films. Moreover, they open the way to many applications in organic electronics, optoelectronics and sensing. Electro-spinning, the technique subject of this review, is a simple method to effectively form and control conjugated polymer fibers. We provide the basics of the technique and its recent advancements for the formation of highly conducting and high mobility polymer fibers towards their adoption in electronic applications.

15.
Sci Rep ; 3: 3425, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305756

RESUMO

Recent reports on high-mobility organic field-effect transistors (FETs) based on donor-acceptor semiconducting co-polymers have indicated an apparently strong deviation from the paradigm, valid for a series of semi-crystalline polymers, which has been strictly correlating charges mobility to crystalline order. This poses a severe limit on the control of mobility and a fundamental question on the critical length scale which is dominating charge transport. Here we focus on a well-known model material for electron transport, a naphthalene-diimide based copolymer, and we demonstrate that mobility can be controlled over two orders of magnitude, with maximum saturation mobility exceeding 1 cm(2)/Vs at high gate voltages, by controlling the extent of orientational domains through a deposition process as simple as spin-coating. High mobility values can be achieved by adopting solvents inducing a higher amount of pre-aggregates in the solution, which through the interaction with the substrate, provide the polymer with liquid-crystalline like ordering properties.

16.
ACS Macro Lett ; 1(3): 366-369, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35578503

RESUMO

Defect-free bicomponent fibers of poly{[N,N'-bis(2-octyl-dodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}/poly(ethyleneoxide) P(NDI2OD-T2)/PEO are fabricated by means of electrospinning and rinsed with a selective solvent to afford pure P(NDI2OD-T2) while maintaining a fibrous morphology. The elongation strength applied on the spun jet by the high electrical field induces a preferential orientation of polymer chains. An electron mobility analogous to the best obtained with a thin film-based device is achieved in single fiber transistors, and the results are unaffected by the dielectric surface treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...