Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37515035

RESUMO

Generalized Modules for Membrane Antigens (GMMA) are outer membrane vesicles derived from Gram-negative bacteria that can be used to design affordable subunit vaccines. GMMA have been observed to induce a potent humoral immune response in preclinical and clinical studies. In addition, in preclinical studies, it has been found that GMMA can be exploited as optimal antigen carriers for both protein and saccharide antigens, as they are able to promote the enhancement of the antigen-specific humoral immune response when the antigen is overexpressed or chemically conjugated to GMMA. Here we investigated the mechanism of this GMMA carrier effect by immunizing mice and using factor H binding protein and GMMA of Neisseria meningitidis B as an antigen-GMMA model. We confirmed that the antigen displayed on the GMMA surface increased the antigen-specific IgG production and, above all, the antibody functionality measured by the serum bactericidal activity. We found that the enhancement of the bactericidal capacity induced by GMMA carrying the antigen on the surface was associated with the increase in antibody affinity to the antigen, and with the switching toward IgG subclasses with more bactericidal potential. Thus, we conclude that the potent carrier effect of GMMA is due to their ability to promote a better quality of humoral immunity.

2.
NPJ Vaccines ; 8(1): 54, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045859

RESUMO

The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.

3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047152

RESUMO

The presentation of viral antigens on nanoparticles in multivalent arrays has emerged as a valuable technology for vaccines. On the nanoparticle surface, highly ordered, repetitive arrays of antigens can mimic their geometric arrangement on virion surfaces and elicit stronger humoral responses than soluble viral antigens. More recently, bacterial antigens have been presented on self-assembling protein nanoparticles and have elicited protective antibody and effective T-helper responses, further supporting the nanoparticle platform as a universal approach for stimulating potent immunogenicity. Here, we present the rational design, structural analysis, and immunogenicity of self-assembling ferritin nanoparticles displaying eight copies of the Neisseria meningitidis trimeric adhesin NadA. We engineered constructs consisting of two different NadA fragments, head only and head with stalk, that we fused to ferritin and expressed in Escherichia coli. Both fusion constructs self-assembled into the expected nanoparticles as determined by Cryo electron microscopy. In mice, the two nanoparticles elicited comparable NadA antibody levels that were 10- to 100-fold higher than those elicited by the corresponding NadA trimer subunits. Further, the NadAferritin nanoparticles potently induced complement-mediated serum bactericidal activity. These findings confirm the value of self-assembling nanoparticles for optimizing the immunogenicity of bacterial antigens and support the broad applicability of the approach to vaccine programs, especially for the presentation of trimeric antigens.


Assuntos
Nanopartículas , Neisseria meningitidis , Camundongos , Animais , Ferritinas , Antígenos de Bactérias , Antígenos Virais , Anticorpos Bloqueadores , Vacinas Combinadas , Nanopartículas/química
4.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893831

RESUMO

GMMA are outer membrane vesicles (OMVs) released from Gram-negative bacteria genetically modified to enhance OMVs formation that have been shown to be optimal systems to enhance immunogenicity of protein antigens. Here, we selected Neisseria meningitidis factor H binding protein (fHbp) and used the conjugation chemistry as a tool to alter antigen orientation on GMMA. Indeed, fHbp was randomly linked to GMMA or selectively attached via the N-terminus to mimic native presentation of the protein on the bacterial surface. Interestingly, protein and peptide array analyses confirmed that antibodies induced by the selective and the random conjugates showed a pattern very similar to fHbp natively expressed on bacterial surfaces or to the recombinant protein mixed with GMMA, respectively. However, the two conjugates elicited antibodies with similar serum bactericidal activity against meningococcal strains, superior to the protein alone or physically mixed with GMMA. Presentation of fHbp on GMMA strongly enhances the functional immune response elicited by the protein but its orientation on the bacterial surface does not have an impact. This study demonstrates the flexibility of the GMMA platform as a display and delivery system for enhancing antigen immunogenicity and further supports the use of such promising technology for the development of effective vaccines.

5.
Biochem J ; 473(24): 4699-4713, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27784765

RESUMO

Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Neisseria meningitidis/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Epitopos/imunologia , Epitopos/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
6.
Infect Immun ; 81(8): 2851-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716610

RESUMO

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Infecções por Clostridium/imunologia , Enterotoxinas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/prevenção & controle , Cricetinae , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Camundongos , Proteínas Recombinantes/imunologia
7.
Proc Natl Acad Sci U S A ; 103(29): 10834-9, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16825336

RESUMO

Meningitis and sepsis caused by serogroup B meningococcus are two severe diseases that still cause significant mortality. To date there is no universal vaccine that prevents these diseases. In this work, five antigens discovered by reverse vaccinology were expressed in a form suitable for large-scale manufacturing and formulated with adjuvants suitable for human use. The vaccine adjuvanted by aluminum hydroxide induced bactericidal antibodies in mice against 78% of a panel of 85 meningococcal strains representative of the global population diversity. The strain coverage could be increased to 90% and above by the addition of CpG oligonucleotides or by using MF59 as adjuvant. The vaccine has the potential to conquer one of the most devastating diseases of childhood.


Assuntos
Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B/imunologia , Animais , Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Humanos , Meningite Meningocócica/imunologia , Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Camundongos , Microscopia Eletrônica de Transmissão , Neisseria meningitidis Sorogrupo B/classificação , Neisseria meningitidis Sorogrupo B/ultraestrutura , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...