Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(7): e2306125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044318

RESUMO

Multi-layered plasmonic nanostructures are able to highly promote the near-field confinement and effectively activate analytes, which are of predominate significance but are extremely challenging. Herein, the semi-open Au core@carved AuAg multi-shell superstructure nanoparticles (multi-Au@Ag-Au NPs, multi = mono, bi, tri, tetra, and penta) are reported with a high designability on electromagnetic field and capability of effectively capturing analytes. By controlling synthetic parameters such as the number of galvanic exchange and Ag growth, multi-Au@Ag-Au NPs are successfully obtained, with tunable layer numbers and asymmetric nanoholes. Due to collective plasmon oscillations of multi-layered built-in nanogaps, the electromagnetic field strength of a single penta-Au@Ag-Au entity reach 48841. More importantly, the penta-Au@Ag-Au NPs show a remarkable light-harvesting capability, which is adaptive to different Raman lasers, supporting high-diversity detection. Additionally, the structural specificity allows analytes to be sufficiently captured into interior hotspots, and further achieve highly sensitive detection with limit of detection down to 3.22 × 10-12  M. This study not only provides an effective pathway for integrating abundant hotspots and activating target molecules in single plasmonic superstructure, but stimulates advancements in SERS substrates for various applications.

2.
Nano Lett ; 23(21): 9887-9893, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870769

RESUMO

For the practical applications in solar cells and photodetectors, semiconductor colloidal nanocrystals (NCs) are assembled into a high-concentration film with carrier transport characteristics, the full understanding and effective control of which are critical for the achievement of high light-to-electricity conversion efficiencies. Here we have applied transient absorption microscopy to the solid film of giant CdSe/CdS NCs and discovered that at high pump fluences the carrier transport could reach a long distance of ∼2 µm within ∼30 ps after laser pulse excitation. This intriguing behavior is attributed to the metal-insulator transition and the associated bandlike transport, which are promoted by the enhanced electronic coupling among neighboring NCs with extended wave functions overlap of the excited-state charge carriers. Besides providing fundamental transport information in the regime of high laser pump fluences, the above findings shed light on the rational design of high-power light detecting schemes based on colloidal NCs.

3.
Opt Lett ; 48(11): 2849-2852, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262226

RESUMO

Two-dimensional (2-D) optical phased arrays (OPAs) usually suffer from limited scan ranges and small aperture sizes. To overcome these bottlenecks, we utilize an aperiodic 32 × 32 grid to increase the beam scanning range and furthermore distribute 128 grating antennas sparsely among 1024 grid points so as to reduce the array element number. The genetic algorithm is used to optimize the uneven grid spacings and the sparse distribution of grating antennas. With these measures, a 128-channel 2-D OPA operating at 1550 nm realizes a grating-lobe-free steering range of 53° × 16°, a field of view of 24° × 16°, a beam divergence of 0.31° × 0.49°, and a sidelobe suppression ratio of 9 dB.

4.
Phys Rev Lett ; 126(19): 197403, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047589

RESUMO

Single perovskite nanocrystals have emerged as a novel type of semiconductor nanostructure capable of emitting single photons with rich exciton species and fine energy-level structures. Here we focus on single excitons and biexcitons in single perovskite CsPbI_{3} nanocrystals to show, for the first time, how their optical properties are modulated by an external electric field at the cryogenic temperature. The electric field can cause a blueshift in the photoluminescence peak of single excitons, from which the existence of a permanent dipole moment can be deduced. Meanwhile, the fine energy-level structures of single excitons and biexcitons in a single CsPbI_{3} nanocrystal can be simultaneously eliminated, thus preparing a potent platform for the potential generation of polarization-entangled photon pairs.

5.
J Chem Phys ; 151(15): 154201, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640389

RESUMO

Lead-halide perovskite nanocrystals (NCs) have emerged as a novel type of semiconductor nanostructure, attracting great research interests in both fundamental science and practical applications. Here, we compare the optical properties of single CsPbI3 NCs under both one-photon and two-photon excitations, mainly including the photoluminescence (PL) blinking and PL decay dynamics. By means of the PL saturation effect caused by multi-exciton Auger recombination, we have also estimated a two-photon absorption cross section of ∼6.8 × 106 GM for single CsPbI3 NCs. The ability to realize efficient two-photon excitation of single perovskite NCs with strongly suppressed background fluorescence will help not only to promote their bio-imaging and biolabeling applications but also to reveal and manipulate their delicate electronic structures for potential usage in quantum information processing.

6.
Nanoscale ; 11(26): 12619-12625, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31233067

RESUMO

Colloidal semiconductor quantum dots (QDs) have recently attracted great attention in electric field sensing via the quantum-confined Stark effect (QCSE), but they suffer from the random local electric field around the charged QDs through the Auger process or defect traps. Here, QCSE in the ensemble of phase-pure wurtzite CdSe/CdS QDs was studied by applying a uniform external electric field. We observed clear field-dependent photoluminescence (PL) and absorption characteristics in thick-shell CdSe/CdS QDs with 11 CdS monolayers (11 MLs) including a pronounced spectral redshift in PL of ∼2.3 nm and absorption of ∼2.1 nm. The time-dependent PL intensity traces implied that the thick-shell QDs were conducive to realize the Stark shift in QD ensembles due to the effective suppression of the main sources of the local field. These findings were in stark contrast to those of moderate-shell (5 MLs) and ultrathick-shell (15 MLs) CdSe/CdS QDs. The measurement value of exciton polarizability was smaller than the theoretical value, which may be influenced by very few exciton traps. Moreover, the amplified stimulated emission also exhibited obvious optical modulations under the electric field with decreased emission intensity and an increased ultrafast lifetime. Finally, the temporal evolution of the multiexciton process in thick-shell CdSe/CdS QDs indicated that the multiexciton state induced a higher energy state near the band edge, which may weaken the QCSE of a single exciton. Therefore, it was demonstrated that efficient field control over the optical properties of these nanomaterials is feasible and this can open up potential applications in field-controlled electro-optic modulators.

7.
Chem Commun (Camb) ; 54(40): 5126-5129, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29717747

RESUMO

A unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide (Zn-Cr LDH) nanosheets was rationally constructed via a simple electrostatic interaction between them. The purposeful spatial isolation of the holes in the crystal facet-based BiOCl homojunction from the BiOCl/Zn-Cr LDH heterojunction interface significantly increased the survivability of the electrons crossing therein. The optimized loading of Zn-Cr LDH in the system is the prerequisite for the enhanced photoconversion efficiency of CO2.

8.
Nat Commun ; 9(1): 1536, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670113

RESUMO

When closely packed into a high-density film, semiconductor nanocrystals (NCs) can interact with each other to yield collective optical behaviours, which are normally difficult to characterize due to the ensemble average effect. Here we synthesized semiconductor NC clusters and performed single-particle spectroscopic measurements to probe the electronic couplings of several giant CdSe/CdS NCs contained in one cluster with nanometer-scale separations. Such a single cluster exhibits multiple emission peaks at the cryogenic temperature with nearly identical photoluminescence decay dynamics, suggesting that the Förster-type energy transfer does not occur among the composing NCs. Surprisingly, strong photon antibunching is still observed from a single cluster, which can be attributed to the Auger annihilation of photo-excited excitons from different NCs. The isolation of several nearby NCs interacting with the above novel mechanism has marked a solid progress towards a full understanding and an efficient control of the operation parameters in NC-based optoelectronic devices.

9.
Inorg Chem ; 56(10): 5704-5709, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28437076

RESUMO

A series of ZnSn(OH)6 polyhedra are successfully explored with well-controlled area ratio of the exposed {100} and {111} facets. Band alignment of the exposed facet-based homojunction of the elegant polyhedron facilitates spatial separation of photogenerated electrons and holes on {111} and {100} surfaces, respectively. Optimal area ratio of {100} to {111} is the prerequisite for pronounced CO2 photocatalytic performance of high-symmetry cuboctahedra into methane (CH4). The synergistic effect of the excess electron accumulation and simultaneously the enhanced CO2 absorption and low dissociation activation energy on {111} reduction sites promote the yield of CO2 photocatalytic conversion product.

10.
ACS Appl Mater Interfaces ; 9(15): 13293-13303, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28357855

RESUMO

"Giant" semiconductor quantum dots (GQDs) have tremendous potential for applications in laser devices. Here, CdSe/CdS core-shell GQDs (11 monolayers) have been synthesized as lasing gain material. The photoluminescence decay of the GQD ensemble is single-exponential, and the two-photon absorption cross-section is above 105 GM. This article presents a versatile method for fabrication of CdSe/CdS GQD distributed feedback (DFB) lasers by laser interference ablation. A high-quality surface-relief grating structure can be readily created on the GQD thin films, and the relationship between laser beam intensity and surface modulation depth is studied. With appropriate periods, single-mode lasing emission has been detected from these devices under excitation wavelengths of 400 and 800 nm. The laser thresholds are as low as 0.028 and 1.03 mJ cm-2, with the lasing Q-factors of 709 and 586, respectively. Lasing operation is realized from the direct laser interference-ablated QD DFB structures for the first time.

11.
ACS Appl Mater Interfaces ; 9(7): 6104-6113, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124560

RESUMO

Herein, we demonstrate that the facile face-down annealing route which effectively confines the evaporation of residual solvent molecules in one-step deposited precursor films can controllably enable the formation of (110) textured CH3NH3PbI3 films consisting of high-crystallinity well-ordered micrometer-sized grains that span vertically the entire film thickness. Such microstructural features dramatically decrease nonradiative recombination sites as well as greatly improve the transport property of charge carries in the films compared with that of the nontextured ones obtained by the conventional annealing route. As a consequence, the planar-heterojunction perovskite solar cells with these textured CH3NH3PbI3 films exhibit significantly enhanced power conversion efficiency (PCE) along with small hysteresis and excellent stability. The champion cell yields impressive PCE boosting to 18.64% and a stabilized value of around 17.22%. Particularly, it can maintain 86% of its initial value after storage for 20 days in ambient conditions with relative humidity of 10-20%. Our work suggests a facile and effective route for further boosting the efficiency and stability of low-cost perovskite solar cells.

12.
Dalton Trans ; 45(18): 7856-65, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27064445

RESUMO

Large organolead triiodide perovskite (OTP) grains with little intragranular defects are beneficial to minimize carrier recombination, hence boosting cell performance. However, OTP films deposited by the widely used one-step spin-coating route are usually composed of small grains, because the poor thermal stability of OTP inherently restricts the processing window (temperature, time) during the film preparation, thus limiting grain coarsening in the film. Herein, the remarkable grain coarsening via Ostwald ripening in one-step deposited OTP films has been successfully realized by a facile and effective post-synthesis high-temperature heating treatment assisted with spin-coated CH3NH3I. By systematically investigating the heating treatment parameters, a high-quality OTP film with an enlarged average grain size from ∼280 nm to 1.2 µm, greatly enhanced crystallinity, and excellent stoichiometry is achieved. Benefiting from such improved features, this modified film shows significantly reduced defect states corresponding to the decrease of recombination centers, as well as enhanced carrier transport and injection properties, which lead to the dramatically boosted efficiency from 14.54% to 16.88% for planar-heterojunction solar cells. More importantly, the improved OTP film quality provides the possibility of thickening the absorber layer of cells to realize more sufficient absorption without serious aggravation of charge recombination. By further optimizing the thickness of the coarsened OTP films, highly efficient cells with relatively excellent reproducibility and an optimal efficiency of 19.24% are achieved.

13.
Phys Rev Lett ; 116(10): 106404, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015498

RESUMO

To confirm the existence of the carrier multiplication (CM) effect and estimate its generation efficiency of multiple excitons in semiconductor nanocrystals (NCs), it is imperative to completely exclude the false contribution of charged excitons from the measured CM signal. Here we place single CdSe NCs above an aluminum film and successfully resolve their UV-excited photoluminescence (PL) time trajectories where the true and false CM signals are contained in the blinking "on" and "off" levels, respectively. By analyzing the PL dynamics of the on-level photons, an average CM efficiency of ∼20.2% can be reliably estimated when the UV photon energy is ∼2.46 times the NC energy gap.

14.
ACS Nano ; 9(12): 12410-6, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26522082

RESUMO

The power conversion efficiency of photovoltaic devices based on semiconductor perovskites has reached ∼20% after just several years of research efforts. With concomitant discoveries of other promising applications in lasers, light-emitting diodes, and photodetectors, it is natural to anticipate what further excitement these exotic perovskites could bring about. Here we report on the observation of single photon emission from single CsPbBr3 perovskite nanocrystals (NCs) synthesized from a facile colloidal approach. Compared with traditional metal-chalcogenide NCs, these CsPbBr3 NCs exhibit nearly 2 orders of magnitude increase in their absorption cross sections at similar emission colors. Moreover, the radiative lifetime of CsPbBr3 NCs is greatly shortened at both room and cryogenic temperatures to favor an extremely fast output of single photons. The above superior optical properties have paved the way toward quantum-light applications of perovskite NCs in various quantum information processing schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...