Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124370, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876377

RESUMO

Parabens (PBs) are commonly utilized as preservatives in various commodities. Of all the PBs, methylparaben (MeP) and butylparaben (BuP) are usually found together at similar levels in the aqueous environment. Although a few studies have demonstrated that PBs are neurotoxic when present alone, the neurobehavioral toxic effects and mechanisms of coexisting MeP and BuP at environmental levels has not been determined. Neurobehavior is a sensitive indicator for identifying neurotoxicity of environmental pollutants. Therefore, adult female zebrafish (Danio rerio) were chronic co-exposure of MeP and BuP at environmental levels (5, 50, and 500 ng/L) for 60 d to investigate the effects on neurobehavior, histopathology, oxidative stress, mitochondrial function, neurotransmitters and gene expression. The results demonstrated that chronic co-exposure of MeP and BuP interfered with several behaviors (learning-memory, anxiety, fear, aggressive and shoaling behavior) in addition to known mechanisms of producing oxidative stress and disrupting energy. More intriguingly, chronic co-exposure of MeP and BuP caused retinal vacuolization and apoptosis in the optic tectum zone. It even has further effects on the phototransduction pathway, impairing optesthesia and leading to neurotransmitters dysregulation. These are critical underlying mechanisms resulting in neurobehavioral abnormalities. This study confirms that the pollution of multiple PBs by chronic co-exposure in aquatic environments can result neurobehavioral toxicity. It also suggests that the prolonged effects of PBs on aquatic ecosystems and health require close attention.

2.
Micromachines (Basel) ; 11(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218204

RESUMO

A new type of rigid-flexible coupling three degrees of freedom (3-DOF) micro-positioning platform with high positioning accuracy and high bearing capacity is developed, which consists of flexible drive mechanism and rigid platform. The flexible drive mechanism consists of three sets of symmetrical parallel round flexible hinge structures, each with a wedge structure in the middle of the symmetrical parallel flexible hinge. The rigid platform has an inclined plane with the same angle as the wedge, while the wedge structure is used to achieve the self-locking effect. The flexibility matrix method and ANSYS are used to analyze the statics of the flexible drive mechanism. The first four natural frequencies of the platform are obtained by dynamic simulation analysis. A symmetrical rigid flexible coupling micro-positioning platform experimental system is developed. Output characteristics, positioning accuracy, relationship between frequency and amplitude, and bearing performance of the micro-positioning platform are tested. These experimental results obviously show that the micro-positioning platform has good motion characteristics, high positioning accuracy, large movement distance, and large load bearing capacity performance.

3.
Micromachines (Basel) ; 9(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404230

RESUMO

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...