Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e25568, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420407

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly heterogeneous cancer. This heterogeneity has an impact on the efficacy of immunotherapy. Long noncoding RNAs (lncRNAs) have been found to play regulatory functions in cancer immunity. However, the global landscape of immune-derived lncRNA signatures has not yet been explored in colorectal cancer. METHODS: In this study, we applied DESeq2 to identify differentially expressed lncRNAs in colon cancer. Next, we performed an integrative analysis to globally identify immune-driven lncRNA markers in CRC, including immune-associated pathways, tumor immunogenomic features, tumor-infiltrating immune cells, immune checkpoints, microsatellite instability (MSI) and tumor mutation burden (TMB). RESULTS: We also identified dysregulated lncRNAs, such as LINC01354 and LINC02257, and their clinical relevance in CRC. Our findings revealed that the differentially expressed lncRNAs were closely associated with immune pathways. In addition, we found that RP11-354P11.3 and RP11-545G3.1 had the highest association with the immunogenomic signature. As a result, these signatures could serve as markers to assess immunogenomic activity in CRC. Among the immune cells, resting mast cells and M0 macrophages had the highest association with lncRNAs in CRC. The AC006129.2 gene was significantly associated with several immune checkpoints, for example, programmed cell death protein 1 (PD-1) and B and T lymphocyte attenuator (BTLA). Therefore, the AC006129.2 gene could be targeted to regulate the condition of immune cells or immune checkpoints to enhance the efficacy of immunotherapy in CRC patients. Finally, we identified 15 immune-related lncRNA-generated open reading frames (ORFs) corresponding to 15 cancer immune epitopes. CONCLUSION: In conclusion, we provided a genome-wide immune-driven lncRNA signature for CRC that might provide new insights into clinical applications and immunotherapy.

2.
Front Endocrinol (Lausanne) ; 14: 1085041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824355

RESUMO

Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Colina/metabolismo , Metilaminas
3.
J Healthc Eng ; 2021: 8769652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745513

RESUMO

With the rapid development of detection technology, CT imaging technology has been widely used in the early clinical diagnosis of lung nodules. However, accurate assessment of the nature of the nodule remains a challenging task due to the subjective nature of the radiologist. With the increasing amount of publicly available lung image data, it has become possible to use convolutional neural networks for benign and malignant classification of lung nodules. However, as the network depth increases, network training methods based on gradient descent usually lead to gradient dispersion. Therefore, we propose a novel deep convolutional network approach to classify the benignity and malignancy of lung nodules. Firstly, we segmented, extracted, and performed zero-phase component analysis whitening on images of lung nodules. Then, a multilayer perceptron was introduced into the structure to construct a deep convolutional network. Finally, the minibatch stochastic gradient descent method with a momentum coefficient is used to fine-tune the deep convolutional network to avoid the gradient dispersion. The 750 lung nodules in the lung image database are used for experimental verification. Classification accuracy of the proposed method can reach 96.0%. The experimental results show that the proposed method can provide an objective and efficient aid to solve the problem of classifying benign and malignant lung nodules in medical images.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...