Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 267, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840133

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) have been extensively studied to play essential roles in tumor progression. However, more in-depth studies are waiting to be solved on how lncRNAs regulate the progression of hepatocellular carcinoma (HCC). METHODS: Different expression levels of lncRNAs in HCC cells were compared by analysis of Gene Expression Omnibus and The Cancer Genome Atlas databases. The effects of lncRNA FTO Intronic Transcript 1 (FTO-IT1) on HCC cells were assessed by gain- and loss-of-function experiments. Colony formation assay, Edu assay, glucose uptake and lactic acid production assay were performed to evaluate the regulation of proliferation and glycolysis of HCC cells by FTO-IT1. The binding between protein interleukin enhancer binding factor 2/3 (ILF2/ILF3) and FTO-IT1 was determined by RNA pull-down, mass spectroscopy and RNA immunoprecipitation experiments. RNA stability assay, quantitative reverse transcription PCR and Western blot were employed to determine the regulatory mechanisms of FTO-IT1 on fat mass and obesity-associated (FTO). Methylated RNA immunoprecipitation assay was used to assessed the regulation of key enzymes of glycolysis by FTO. The role of FTO-IT1/FTO in vivo was confirmed via xenograft tumor model. RESULTS: LncRNA FTO-IT1, an intronic region transcript of FTO gene, was highly expressed in HCC and associated with poor prognosis of patients with HCC. FTO-IT1 was related to proliferation and glycolysis of HCC cells, and contributed to the malignant progression of HCC by promoting glycolysis. Mechanistically, FTO-IT1 induced stabilization of FTO mRNA by recruiting ILF2/ILF3 protein complex to 3'UTR of FTO mRNA. As a demethylase for N6-methyladenosine (m6A), FTO decreased m6A modification on mRNAs of glycolysis associated genes including GLUT1, PKM2, and c-Myc which alleviated the YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated mRNA degradation. Therefore, the upregulated expression of FTO-IT1 leaded to overexpression of GLUT1, PKM2, and c-Myc by which enhanced glycolysis of HCC. Meanwhile, it was found that c-Myc transcriptional regulated expression of FTO-IT1 by binding to its promoter area under hypo-glucose condition, forming a reciprocal loop between c-Myc and FTO-IT1. CONCLUSIONS: This study identified an important role of the FTO-IT1/FTO axis mediated m6A modification of glycolytic genes contributed to glycolysis and tumorigenesis of HCC, and FTO-IT1 might be served as a new therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Glicólise , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
2.
Gastroenterology ; 165(6): 1488-1504.e20, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37634735

RESUMO

BACKGROUND & AIMS: Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS: Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS: SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS: The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.


Assuntos
Células Acinares , Pancreatite Crônica , Animais , Camundongos , Receptores de Esfingosina-1-Fosfato , Células Estreladas do Pâncreas , Pancreatite Crônica/induzido quimicamente , Autofagia , Proteínas Quinases Ativadas por AMP , Fibrose , Monofosfato de Adenosina , Hipóxia , Mamíferos
3.
Cancer Sci ; 114(9): 3623-3635, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488751

RESUMO

Pancreatic cancer (PC) development faces significant metabolic stress due to metabolic reprogramming and a distinct hypovascular nature, often leading to glucose and glutamine depletion. However, the adaption mechanisms by which PC adapts to these metabolic challenges have not yet been completely explored. Here, we found that metabolic stress induced by glucose and glutamine deprivation led to an overexpression of ZNFX1 antisense RNA 1 (ZFAS1). This overexpression played a significant role in instigating PC cell epithelial-mesenchymal transition (EMT) and metastasis. Mechanistically, ZFAS1 enhanced the interaction between AMPK, a key kinase, and ZEB1, the primary regulator of EMT. This interaction resulted in the phosphorylation and subsequent stabilization of ZEB1. Interestingly, ZEB1 also reciprocally influenced the transcription of ZFAS1 by binding to its promoter. Furthermore, when ZFAS1 was depleted, the nutrient deprivation-induced EMT of PC cells and lung metastasis in nude mice were significantly inhibited. Our investigations also revealed that ZFAS1-rich exosomes released from cells suffering glucose and glutamine deprivation promoted the EMT and metastasis of recipient PC cells. Corroborating these findings, a correlated upregulation of ZFAS1 and ZEB1 expression was observed in PC tissues and was associated with a poor overall survival rate for patients. Our findings highlight the involvement of a long noncoding RNA-driven metabolic adaptation in promoting EMT and metastasis of PC, suggesting ZFAS1 as a promising novel therapeutic target for PC metabolic treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Glutamina/metabolismo , Neoplasias Pancreáticas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proliferação de Células/genética , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...